These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 14752030)

  • 1. Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3.
    Champion HC; Georgakopoulos D; Takimoto E; Isoda T; Wang Y; Kass DA
    Circ Res; 2004 Mar; 94(5):657-63. PubMed ID: 14752030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and reinforces vagal inhibition of cardiac contraction.
    Massion PB; Dessy C; Desjardins F; Pelat M; Havaux X; Belge C; Moulin P; Guiot Y; Feron O; Janssens S; Balligand JL
    Circulation; 2004 Oct; 110(17):2666-72. PubMed ID: 15492314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase.
    Vandecasteele G; Eschenhagen T; Scholz H; Stein B; Verde I; Fischmeister R
    Nat Med; 1999 Mar; 5(3):331-4. PubMed ID: 10086391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases.
    Khan SA; Skaf MW; Harrison RW; Lee K; Minhas KM; Kumar A; Fradley M; Shoukas AA; Berkowitz DE; Hare JM
    Circ Res; 2003 Jun; 92(12):1322-9. PubMed ID: 12764022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are myocardial eNOS and nNOS involved in the beta-adrenergic and muscarinic regulation of inotropy? A systematic investigation.
    Martin SR; Emanuel K; Sears CE; Zhang YH; Casadei B
    Cardiovasc Res; 2006 Apr; 70(1):97-106. PubMed ID: 16545353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat.
    Bendall JK; Damy T; Ratajczak P; Loyer X; Monceau V; Marty I; Milliez P; Robidel E; Marotte F; Samuel JL; Heymes C
    Circulation; 2004 Oct; 110(16):2368-75. PubMed ID: 15466641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of inhibitory G-proteins mediates a reduction in atrial beta-adrenergic signaling by enhancing eNOS expression.
    Danson EJ; Zhang YH; Sears CE; Edwards AR; Casadei B; Paterson DJ
    Cardiovasc Res; 2005 Sep; 67(4):613-23. PubMed ID: 15936740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocyte nitric oxide synthase 2 contributes to blunted beta-adrenergic response in failing human hearts by decreasing Ca2+ transients.
    Ziolo MT; Maier LS; Piacentino V; Bossuyt J; Houser SR; Bers DM
    Circulation; 2004 Apr; 109(15):1886-91. PubMed ID: 15037528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion.
    Okoshi K; Nakayama M; Yan X; Okoshi MP; Schuldt AJ; Marchionni MA; Lorell BH
    Circulation; 2004 Aug; 110(6):713-7. PubMed ID: 15289373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism.
    Takimoto E; Champion HC; Belardi D; Moslehi J; Mongillo M; Mergia E; Montrose DC; Isoda T; Aufiero K; Zaccolo M; Dostmann WR; Smith CJ; Kass DA
    Circ Res; 2005 Jan; 96(1):100-9. PubMed ID: 15576651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock.
    Ichinose F; Buys ES; Neilan TG; Furutani EM; Morgan JG; Jassal DS; Graveline AR; Searles RJ; Lim CC; Kaneki M; Picard MH; Scherrer-Crosbie M; Janssens S; Liao R; Bloch KD
    Circ Res; 2007 Jan; 100(1):130-9. PubMed ID: 17138944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficiency of different nitric oxide synthase isoforms activates divergent transcriptional programs in cardiac hypertrophy.
    Cappola TP; Cope L; Cernetich A; Barouch LA; Minhas K; Irizarry RA; Parmigiani G; Durrani S; Lavoie T; Hoffman EP; Ye SQ; Garcia JG; Hare JM
    Physiol Genomics; 2003 Jun; 14(1):25-34. PubMed ID: 12709511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice.
    Liao Y; Asakura M; Takashima S; Ogai A; Asano Y; Shintani Y; Minamino T; Asanuma H; Sanada S; Kim J; Kitamura S; Tomoike H; Hori M; Kitakaze M
    Circulation; 2004 Aug; 110(6):692-9. PubMed ID: 15262839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of myocardial nitric oxide in diabetic ischemia-reperfusion dysfunction: studies in mice with myocyte-specific overexpression of endothelial nitric-oxide synthase.
    Pozo-Navas B; Stessel H; Wölkart G; Brunner F
    J Pharmacol Exp Ther; 2006 Nov; 319(2):729-38. PubMed ID: 16857730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide, a key signaling molecule in the murine early embryonic heart.
    Malan D; Ji GJ; Schmidt A; Addicks K; Hescheler J; Levi RC; Bloch W; Fleischmann BK
    FASEB J; 2004 Jul; 18(10):1108-10. PubMed ID: 15132985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction.
    Janssens S; Pokreisz P; Schoonjans L; Pellens M; Vermeersch P; Tjwa M; Jans P; Scherrer-Crosbie M; Picard MH; Szelid Z; Gillijns H; Van de Werf F; Collen D; Bloch KD
    Circ Res; 2004 May; 94(9):1256-62. PubMed ID: 15044322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase.
    Kinugawa S; Huang H; Wang Z; Kaminski PM; Wolin MS; Hintze TH
    Circ Res; 2005 Feb; 96(3):355-62. PubMed ID: 15637297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5.
    Takimoto E; Belardi D; Tocchetti CG; Vahebi S; Cormaci G; Ketner EA; Moens AL; Champion HC; Kass DA
    Circulation; 2007 Apr; 115(16):2159-67. PubMed ID: 17420342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscarinic inhibitory and stimulatory regulation of the L-type Ca2+ current is not altered in cardiac ventricular myocytes from mice lacking endothelial nitric oxide synthase.
    Belevych AE; Harvey RD
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):279-89. PubMed ID: 11034618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes.
    Belhassen L; Kelly RA; Smith TW; Balligand JL
    J Clin Invest; 1996 Apr; 97(8):1908-15. PubMed ID: 8621775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.