BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 14752106)

  • 1. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein.
    Yamagishi A; Masuda M; Ohki T; Onishi H; Mochizuki N
    J Biol Chem; 2004 Apr; 279(15):14929-36. PubMed ID: 14752106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization.
    Robens JM; Yeow-Fong L; Ng E; Hall C; Manser E
    Mol Cell Biol; 2010 Feb; 30(3):829-44. PubMed ID: 19933840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex.
    Disanza A; Mantoani S; Hertzog M; Gerboth S; Frittoli E; Steffen A; Berhoerster K; Kreienkamp HJ; Milanesi F; Di Fiore PP; Ciliberto A; Stradal TE; Scita G
    Nat Cell Biol; 2006 Dec; 8(12):1337-47. PubMed ID: 17115031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics.
    Lim KB; Bu W; Goh WI; Koh E; Ong SH; Pawson T; Sudhaharan T; Ahmed S
    J Biol Chem; 2008 Jul; 283(29):20454-72. PubMed ID: 18448434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation.
    Goh WI; Lim KB; Sudhaharan T; Sem KP; Bu W; Chou AM; Ahmed S
    J Biol Chem; 2012 Feb; 287(7):4702-14. PubMed ID: 22179776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of IRTKS, a novel IRSp53/MIM family actin regulator with distinct filament bundling properties.
    Millard TH; Dawson J; Machesky LM
    J Cell Sci; 2007 May; 120(Pt 9):1663-72. PubMed ID: 17430976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases.
    Choi J; Ko J; Racz B; Burette A; Lee JR; Kim S; Na M; Lee HW; Kim K; Weinberg RJ; Kim E
    J Neurosci; 2005 Jan; 25(4):869-79. PubMed ID: 15673667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. I-BAR domains, IRSp53 and filopodium formation.
    Ahmed S; Goh WI; Bu W
    Semin Cell Dev Biol; 2010 Jun; 21(4):350-6. PubMed ID: 19913105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2.
    Abou-Kheir W; Isaac B; Yamaguchi H; Cox D
    J Cell Sci; 2008 Feb; 121(Pt 3):379-90. PubMed ID: 18198193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53.
    Millard TH; Bompard G; Heung MY; Dafforn TR; Scott DJ; Machesky LM; Fütterer K
    EMBO J; 2005 Jan; 24(2):240-50. PubMed ID: 15635447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex.
    Krugmann S; Jordens I; Gevaert K; Driessens M; Vandekerckhove J; Hall A
    Curr Biol; 2001 Oct; 11(21):1645-55. PubMed ID: 11696321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mammalian verprolin, WIRE induces filopodia independent of N-WASP through IRSp53.
    Misra A; Rajmohan R; Lim RP; Bhattacharyya S; Thanabalu T
    Exp Cell Res; 2010 Oct; 316(17):2810-24. PubMed ID: 20678498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena.
    Nakagawa H; Miki H; Nozumi M; Takenawa T; Miyamoto S; Wehland J; Small JV
    J Cell Sci; 2003 Jun; 116(Pt 12):2577-83. PubMed ID: 12734400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rif-mDia1 interaction is involved in filopodium formation independent of Cdc42 and Rac effectors.
    Goh WI; Sudhaharan T; Lim KB; Sem KP; Lau CL; Ahmed S
    J Biol Chem; 2011 Apr; 286(15):13681-94. PubMed ID: 21339294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane binding properties of IRSp53-missing in metastasis domain (IMD) protein.
    Futó K; Bódis E; Machesky LM; Nyitrai M; Visegrády B
    Biochim Biophys Acta; 2013 Nov; 1831(11):1651-5. PubMed ID: 23872532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the actin-binding function of missing-in-metastasis.
    Lee SH; Kerff F; Chereau D; Ferron F; Klug A; Dominguez R
    Structure; 2007 Feb; 15(2):145-55. PubMed ID: 17292833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the insulin-responsive tyrosine phosphorylation sites on IRSp53.
    Heung MY; Visegrady B; Fütterer K; Machesky LM
    Eur J Cell Biol; 2008 Sep; 87(8-9):699-708. PubMed ID: 18417251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac.
    Suetsugu S; Kurisu S; Oikawa T; Yamazaki D; Oda A; Takenawa T
    J Cell Biol; 2006 May; 173(4):571-85. PubMed ID: 16702231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B.
    Bompard G; Sharp SJ; Freiss G; Machesky LM
    J Cell Sci; 2005 Nov; 118(Pt 22):5393-403. PubMed ID: 16280553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kank attenuates actin remodeling by preventing interaction between IRSp53 and Rac1.
    Roy BC; Kakinuma N; Kiyama R
    J Cell Biol; 2009 Jan; 184(2):253-67. PubMed ID: 19171758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.