BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14752111)

  • 1. End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon.
    Bibillo A; Eickbush TH
    J Biol Chem; 2004 Apr; 279(15):14945-53. PubMed ID: 14752111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates.
    Bibiłło A; Eickbush TH
    J Mol Biol; 2002 Feb; 316(3):459-73. PubMed ID: 11866511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase.
    Luan DD; Eickbush TH
    Mol Cell Biol; 1996 Sep; 16(9):4726-34. PubMed ID: 8756630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon.
    Kurzynska-Kokorniak A; Jamburuthugoda VK; Bibillo A; Eickbush TH
    J Mol Biol; 2007 Nov; 374(2):322-33. PubMed ID: 17936300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-Seq.
    Lentzsch AM; Yao J; Russell R; Lambowitz AM
    J Biol Chem; 2019 Dec; 294(51):19764-19784. PubMed ID: 31712313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element.
    Luan DD; Eickbush TH
    Mol Cell Biol; 1995 Jul; 15(7):3882-91. PubMed ID: 7540721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separable structural requirements for cDNA synthesis, nontemplated extension, and template jumping by a non-LTR retroelement reverse transcriptase.
    Pimentel SC; Upton HE; Collins K
    J Biol Chem; 2022 Mar; 298(3):101624. PubMed ID: 35065960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for template switching by a group II intron-encoded non-LTR-retroelement reverse transcriptase.
    Lentzsch AM; Stamos JL; Yao J; Russell R; Lambowitz AM
    J Biol Chem; 2021 Aug; 297(2):100971. PubMed ID: 34280434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo and DNA primer-mediated initiation of cDNA synthesis by the mauriceville retroplasmid reverse transcriptase involve recognition of a 3' CCA sequence.
    Chen B; Lambowitz AM
    J Mol Biol; 1997 Aug; 271(3):311-32. PubMed ID: 9268661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage.
    Penno C; Kumari R; Baranov PV; van Sinderen D; Atkins JF
    Nucleic Acids Res; 2017 Sep; 45(17):10143-10155. PubMed ID: 28973469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High processivity of the reverse transcriptase from a non-long terminal repeat retrotransposon.
    Bibillo A; Eickbush TH
    J Biol Chem; 2002 Sep; 277(38):34836-45. PubMed ID: 12101182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct and overlapping RNA determinants for binding and target-primed reverse transcription by Bombyx mori R2 retrotransposon protein.
    Rodríguez-Vargas A; Collins K
    Nucleic Acids Res; 2024 Jun; 52(11):6571-6585. PubMed ID: 38499488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-bias ncRNA libraries using ordered two-template relay: Serial template jumping by a modified retroelement reverse transcriptase.
    Upton HE; Ferguson L; Temoche-Diaz MM; Liu XM; Pimentel SC; Ingolia NT; Schekman R; Collins K
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34649994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities.
    Wilhelm M; Boutabout M; Wilhelm FX
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):337-42. PubMed ID: 10816427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template switching by reverse transcriptase during DNA synthesis.
    Luo GX; Taylor J
    J Virol; 1990 Sep; 64(9):4321-8. PubMed ID: 1696639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase.
    Jamburuthugoda VK; Eickbush TH
    Nucleic Acids Res; 2014 Jul; 42(13):8405-15. PubMed ID: 24957604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reverse transcriptase encoded by the non-LTR retrotransposon R2 is as error-prone as that encoded by HIV-1.
    Jamburuthugoda VK; Eickbush TH
    J Mol Biol; 2011 Apr; 407(5):661-72. PubMed ID: 21320510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of human immunodeficiency virus reverse transcriptase-catalyzed strand transfer from internal regions of heteropolymeric RNA templates.
    DeStefano JJ; Bambara RA; Fay PJ
    J Biol Chem; 1994 Jan; 269(1):161-8. PubMed ID: 7506252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of deoxyoligonucleotide and tRNA(Lys-3) as primers in an endogenous human immunodeficiency virus-1 in vitro reverse transcription/template-switching reaction.
    Arts EJ; Li X; Gu Z; Kleiman L; Parniak MA; Wainberg MA
    J Biol Chem; 1994 May; 269(20):14672-80. PubMed ID: 7514178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro.
    Klarmann GJ; Schauber CA; Preston BD
    J Biol Chem; 1993 May; 268(13):9793-802. PubMed ID: 7683663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.