These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1475313)

  • 1. Effects of diurnal phase and pimozide on cholecystokinin-elicited hypoactivity in the hamster.
    Schnur P; Espinoza M; Flores R
    Pharmacol Biochem Behav; 1992 Dec; 43(4):979-84. PubMed ID: 1475313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cholecystokinin on morphine-elicited hyperactivity in hamsters.
    Schnur P; Cesar SS; Foderaro MA; Kulkosky PJ
    Pharmacol Biochem Behav; 1991 Jul; 39(3):581-6. PubMed ID: 1784587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cholinergic antagonist, mecamylamine, blocks the phase-shifting effects of light on the circadian rhythm of locomotor activity in the golden hamster.
    Keefe DL; Earnest DJ; Nelson D; Takahashi JS; Turek FW
    Brain Res; 1987 Feb; 403(2):308-12. PubMed ID: 3548889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholecystokinin antagonizes morphine induced hypoactivity and hyperactivity in hamsters.
    Schnur P; Raigoza VP; Sanchez MR; Kulkosky PJ
    Pharmacol Biochem Behav; 1986 Nov; 25(5):1067-70. PubMed ID: 3786358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NK1 receptor antagonist affects the circadian regulation of locomotor activity in golden hamsters.
    Challet E; Naylor E; Metzger JM; MacIntyre DE; Turek FW
    Brain Res; 1998 Jul; 800(1):32-9. PubMed ID: 9685577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conservation of locomotor behavior in the golden hamster: effects of light cycle and a circadian period mutation.
    Osiel S; Golombek DA; Ralph MR
    Physiol Behav; 1998 Aug; 65(1):123-31. PubMed ID: 9811374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twelve-hour phase shifts of hamster circadian rhythms elicited by voluntary wheel running.
    Gannon RL; Rea MA
    J Biol Rhythms; 1995 Sep; 10(3):196-210. PubMed ID: 7488758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging and photoperiod affect entrainment and quantitative aspects of locomotor behavior in Syrian hamsters.
    Scarbrough K; Losee-Olson S; Wallen EP; Turek FW
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1219-25. PubMed ID: 9140023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nocturnal illumination does not necessarily stimulate the photoperiodic response, despite mimicking the effects of constant light on the circadian system in the male Syrian hamster.
    Ferraro JS; Krum HN; Bartke A; Wassmer GT; Chandrashekar V; Michael SD; Sulzman FM
    Physiol Behav; 1990 Mar; 47(3):577-88. PubMed ID: 2113674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesions of the thalamic intergeniculate leaflet block activity-induced phase shifts in the circadian activity rhythm of the golden hamster.
    Wickland C; Turek FW
    Brain Res; 1994 Oct; 660(2):293-300. PubMed ID: 7820698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice.
    Valentinuzzi VS; Scarbrough K; Takahashi JS; Turek FW
    Am J Physiol; 1997 Dec; 273(6):R1957-64. PubMed ID: 9435649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonphotically induced phase shifts of circadian rhythms in the golden hamster: activity-response curves at different ambient temperatures.
    Janik D; Mrosovsky N
    Physiol Behav; 1993 Mar; 53(3):431-6. PubMed ID: 8451307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.
    Manoogian EN; Leise TL; Bittman EL
    J Biol Rhythms; 2015 Apr; 30(2):129-43. PubMed ID: 25633984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian organization in a diurnal rodent, Arvicanthis ansorgei Thomas 1910: chronotypes, responses to constant lighting conditions, and photoperiodic changes.
    Challet E; Pitrosky B; Sicard B; Malan A; Pévet P
    J Biol Rhythms; 2002 Feb; 17(1):52-64. PubMed ID: 11837949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of photoperiod and running wheel access on the entrainment of split circadian rhythms in hamsters.
    Rosenthal SL; Vakili MM; Evans JA; Elliott JA; Gorman MR
    BMC Neurosci; 2005 Jun; 6():41. PubMed ID: 15967036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of light intensity and restraint on dark-pulse-induced circadian phase shifting during subjective night in Syrian hamsters.
    Dwyer SM; Rosenwasser AM
    J Biol Rhythms; 2000 Dec; 15(6):491-500. PubMed ID: 11106066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian clock resetting by sleep deprivation without exercise in Syrian hamsters: dark pulses revisited.
    Mistlberger RE; Belcourt J; Antle MC
    J Biol Rhythms; 2002 Jun; 17(3):227-37. PubMed ID: 12054194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daily novel wheel running reorganizes and splits hamster circadian activity rhythms.
    Gorman MR; Lee TM
    J Biol Rhythms; 2001 Dec; 16(6):541-51. PubMed ID: 11760012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.