BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1475320)

  • 1. The distance between the phytochrome chromophore and the N-terminal chain decreases during phototransformation. A novel fluorescence energy transfer method using labeled antibody fragments.
    Farrens DL; Cordonnier MM; Pratt LH; Song PS
    Photochem Photobiol; 1992 Nov; 56(5):725-33. PubMed ID: 1475320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification.
    Chai YG; Song PS; Cordonnier MM; Pratt LH
    Biochemistry; 1987 Aug; 26(16):4947-52. PubMed ID: 3663636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.
    Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD
    Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular topography of phytochrome: chromophore and apoprotein.
    Song PS
    J Photochem Photobiol B; 1988 Jul; 2(1):43-57. PubMed ID: 3149301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromophore topography and secondary structure of 124-kilodalton Avena phytochrome probed by Zn2(+)-induced chromophore modification.
    Sommer D; Song PS
    Biochemistry; 1990 Feb; 29(7):1943-8. PubMed ID: 2184893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome.
    Andel F; Lagarias JC; Mathies RA
    Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature of phototransformation of phytochrome As probed by intrinsic tryptophan residues.
    Sarkar HK; Song PS
    Biochemistry; 1982 Apr; 21(8):1967-72. PubMed ID: 7082656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A.
    Gärtner W; Hill C; Worm K; Braslavsky SE; Schaffner K
    Eur J Biochem; 1996 Mar; 236(3):978-83. PubMed ID: 8665921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of mutations in the chromophore pocket of recombinant phytochrome on chromoprotein assembly and Pr-to-Pfr photoconversion.
    Remberg A; Schmidt P; Braslavsky SE; Gärtner W; Schaffner K
    Eur J Biochem; 1999 Nov; 266(1):201-8. PubMed ID: 10542065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study.
    Kneip C; Hildebrandt P; Schlamann W; Braslavsky SE; Mark F; Schaffner K
    Biochemistry; 1999 Nov; 38(46):15185-92. PubMed ID: 10563801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modeling of phytochrome using constitutive C-phycocyanin from Fremyella diplosiphon as a putative structural template.
    Parker W; Goebel P; Ross CR; Song PS; Stezowski JJ
    Bioconjug Chem; 1994; 5(1):21-30. PubMed ID: 8199230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phototransformation of pea phytochrome A induces an increase in alpha-helical folding of the apoprotein: comparison with a monocot phytochrome A and CD analysis by different methods.
    Deforce L; Tokutomi S; Song PS
    Biochemistry; 1994 Apr; 33(16):4918-22. PubMed ID: 8161552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1.
    van Thor JJ; Mackeen M; Kuprov I; Dwek RA; Wormald MR
    Biophys J; 2006 Sep; 91(5):1811-22. PubMed ID: 16751241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman study on intact pea phytochrome and its model compounds: evidence for proton migration during the phototransformation.
    Mizutani Y; Tokutomi S; Aoyagi K; Horitsu K; Kitagawa T
    Biochemistry; 1991 Nov; 30(44):10693-700. PubMed ID: 1657153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between native oat phytochrome and tetrapyrroles.
    Singh BR; Song PS
    Biochim Biophys Acta; 1989 Jun; 996(1-2):62-9. PubMed ID: 2736260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved thermodynamic analysis of the oat phytochrome A phototransformation. A photothermal beam deflection study.
    Michler I; Braslavsky SE
    Photochem Photobiol; 2001 Oct; 74(4):624-35. PubMed ID: 11683044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of bound monoclonal antibodies on the decay of the phototransformation intermediates I700(1,2) from native Avena phytochrome.
    Lindemann P; Braslavsky SE; Cordonnier MM; Pratt LH; Schaffner K
    Photochem Photobiol; 1993 Sep; 58(3):417-24. PubMed ID: 8234477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic properties of phytochrome as probed by 8-anilinonaphthalene-1-sulfonate fluorescence.
    Hahn TR; Song PS
    Biochemistry; 1981 Apr; 20(9):2602-9. PubMed ID: 7236624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.