These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14753297)

  • 1. Tautomerism in computer-aided drug design.
    Pospisil P; Ballmer P; Scapozza L; Folkers G
    J Recept Signal Transduct Res; 2003; 23(4):361-71. PubMed ID: 14753297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening.
    Zavodszky MI; Sanschagrin PC; Korde RS; Kuhn LA
    J Comput Aided Mol Des; 2002 Dec; 16(12):883-902. PubMed ID: 12825621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical hydrogen bonding parameters for drug design.
    Gancia E; Montana JG; Manallack DT
    J Mol Graph Model; 2001; 19(3-4):349-62. PubMed ID: 11449575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design.
    Zauhar RJ; Moyna G; Tian L; Li Z; Welsh WJ
    J Med Chem; 2003 Dec; 46(26):5674-90. PubMed ID: 14667221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AutoMap: a tool for analyzing protein-ligand recognition using multiple ligand binding modes.
    Agostino M; Mancera RL; Ramsland PA; Yuriev E
    J Mol Graph Model; 2013 Mar; 40():80-90. PubMed ID: 23376613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico identification of bioisosteric functional groups.
    Ertl P
    Curr Opin Drug Discov Devel; 2007 May; 10(3):281-8. PubMed ID: 17554854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pK(a) based protonation states and microspecies for protein-ligand docking.
    ten Brink T; Exner TE
    J Comput Aided Mol Des; 2010 Nov; 24(11):935-42. PubMed ID: 20882397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing protein-ligand docking for the binding of organometallic compounds to proteins.
    Ortega-Carrasco E; Lledós A; Maréchal JD
    J Comput Chem; 2014 Jan; 35(3):192-8. PubMed ID: 24375319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GREEN: a program package for docking studies in rational drug design.
    Tomioka N; Itai A
    J Comput Aided Mol Des; 1994 Aug; 8(4):347-66. PubMed ID: 7815089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.
    Lather A; Sharma S; Khatkar A
    Comb Chem High Throughput Screen; 2018; 21(3):182-193. PubMed ID: 29600755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy of computer-aided drug design.
    Veselovsky AV; Ivanov AS
    Curr Drug Targets Infect Disord; 2003 Mar; 3(1):33-40. PubMed ID: 12570731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational automatic search method for stable docking models of protein and ligand.
    Mizutani MY; Tomioka N; Itai A
    J Mol Biol; 1994 Oct; 243(2):310-26. PubMed ID: 7932757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling of hydration in drug design.
    Mancera RL
    Curr Opin Drug Discov Devel; 2007 May; 10(3):275-80. PubMed ID: 17554853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and optimization of structure-based virtual screening protocols (1): exploration of ligand conformational sampling techniques.
    Good AC; Cheney DL
    J Mol Graph Model; 2003 Sep; 22(1):23-30. PubMed ID: 12798388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of sigma 1 receptor ligands: a model of binding conformational and electrostatic considerations.
    Gund TM; Floyd J; Jung D
    J Mol Graph Model; 2004 Jan; 22(3):221-30. PubMed ID: 14629980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Database screening for HIV protease ligands: the influence of binding-site conformation and representation on ligand selectivity.
    Schnecke V; Kuhn LA
    Proc Int Conf Intell Syst Mol Biol; 1999; ():242-51. PubMed ID: 10786307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.
    Pérot S; Regad L; Reynès C; Spérandio O; Miteva MA; Villoutreix BO; Camproux AC
    PLoS One; 2013; 8(6):e63730. PubMed ID: 23840299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic complementarity between proteins and ligands. 3. Structural basis.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):545-64. PubMed ID: 7876900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.