These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Lund concept for the management of traumatic brain injury: a physiological principle awaiting stronger evidence. Sharma D; Vavilala MS J Neurosurg Anesthesiol; 2011 Oct; 23(4):363-7. PubMed ID: 21908990 [TBL] [Abstract][Full Text] [Related]
6. [The internal environment and intracranial hypertension]. Ichai C; Ciais JF; Grimaud D Ann Fr Anesth Reanim; 1997; 16(4):435-44. PubMed ID: 9750595 [TBL] [Abstract][Full Text] [Related]
7. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model. Bergsneider M; Alwan AA; Falkson L; Rubinstein EH Acta Neurochir Suppl; 1998; 71():266-8. PubMed ID: 9779203 [TBL] [Abstract][Full Text] [Related]
8. The "Lund Concept" for the treatment of severe head trauma--physiological principles and clinical application. Grände PO Intensive Care Med; 2006 Oct; 32(10):1475-84. PubMed ID: 16896859 [TBL] [Abstract][Full Text] [Related]
9. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Nordström CH; Koskinen LO; Olivecrona M Front Neurol; 2017; 8():274. PubMed ID: 28674514 [TBL] [Abstract][Full Text] [Related]
10. [Hydrostatic pressure and neurosurgical pathology]. Hans P Ann Fr Anesth Reanim; 1994; 13(1):123-6. PubMed ID: 8092568 [TBL] [Abstract][Full Text] [Related]
11. Induced Dynamic Intracranial Pressure and Cerebrovascular Reactivity Assessment of Cerebrovascular Autoregulation After Traumatic Brain Injury with High Intracranial Pressure in Rats. Bragin DE; Statom GL; Nemoto EM Acta Neurochir Suppl; 2018; 126():309-312. PubMed ID: 29492580 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Cerebrovascular and Intracranial Pressure Reactivity Assessment of Impaired Cerebrovascular Autoregulation in Intracranial Hypertension. Bragin DE; Statom G; Nemoto EM Acta Neurochir Suppl; 2016; 122():255-60. PubMed ID: 27165917 [TBL] [Abstract][Full Text] [Related]
13. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Eker C; Asgeirsson B; Grände PO; Schalén W; Nordström CH Crit Care Med; 1998 Nov; 26(11):1881-6. PubMed ID: 9824083 [TBL] [Abstract][Full Text] [Related]
15. Pulsed Electromagnetic Field (PEMF) Mitigates High Intracranial Pressure (ICP) Induced Microvascular Shunting (MVS) in Rats. Bragin DE; Bragina OA; Hagberg S; Nemoto EM Acta Neurochir Suppl; 2018; 126():93-95. PubMed ID: 29492540 [TBL] [Abstract][Full Text] [Related]
16. A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Asgeirsson B; Grände PO; Nordström CH Intensive Care Med; 1994; 20(4):260-7. PubMed ID: 8046119 [TBL] [Abstract][Full Text] [Related]
17. Arterial hypertension increases intracranial pressure in cat after opening of the blood-brain barrier. Kongstad L; Grände PO J Trauma; 2001 Sep; 51(3):490-6. PubMed ID: 11535896 [TBL] [Abstract][Full Text] [Related]
18. [Osmotic cerebral oedema: the role of plasma osmolarity and blood brain barrier]. Boulard G; Marguinaud E; Sesay M Ann Fr Anesth Reanim; 2003 Mar; 22(3):215-9. PubMed ID: 12747989 [TBL] [Abstract][Full Text] [Related]
19. [Hypertonic solutions and intracranial pressure]. Favre JB; Ravussin P; Chiolero R; Bissonnette B Schweiz Med Wochenschr; 1996 Sep; 126(39):1635-43. PubMed ID: 8927967 [TBL] [Abstract][Full Text] [Related]