BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 14753736)

  • 1. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury.
    Modlesky CM; Majumdar S; Narasimhan A; Dudley GA
    J Bone Miner Res; 2004 Jan; 19(1):48-55. PubMed ID: 14753736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deteriorated geometric structure and strength of the midfemur in men with complete spinal cord injury.
    Modlesky CM; Slade JM; Bickel CS; Meyer RA; Dudley GA
    Bone; 2005 Feb; 36(2):331-9. PubMed ID: 15780960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone loss and mechanical properties of tibia in spinal cord injured men.
    Dionyssiotis Y; Trovas G; Galanos A; Raptou P; Papaioannou N; Papagelopoulos P; Petropoulou K; Lyritis GP
    J Musculoskelet Neuronal Interact; 2007; 7(1):62-8. PubMed ID: 17396008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in trabecular bone microarchitecture are not detected in pre and early pubertal children using magnetic resonance imaging.
    Modlesky CM; Bajaj D; Kirby JT; Mulrooney BM; Rowe DA; Miller F
    Bone; 2011 Nov; 49(5):1067-72. PubMed ID: 21851868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trabecular bone microarchitecture in female collegiate gymnasts.
    Modlesky CM; Majumdar S; Dudley GA
    Osteoporos Int; 2008 Jul; 19(7):1011-8. PubMed ID: 18074110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pattern of trabecular bone microarchitecture in the distal femur of typically developing children and its effect on processing of magnetic resonance images.
    Modlesky CM; Whitney DG; Carter PT; Allerton BM; Kirby JT; Miller F
    Bone; 2014 Mar; 60():1-7. PubMed ID: 24269277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT).
    Frotzler A; Berger M; Knecht H; Eser P
    Bone; 2008 Sep; 43(3):549-55. PubMed ID: 18567554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Underdeveloped trabecular bone microarchitecture is detected in children with cerebral palsy using high-resolution magnetic resonance imaging.
    Modlesky CM; Subramanian P; Miller F
    Osteoporos Int; 2008 Feb; 19(2):169-76. PubMed ID: 17962918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women.
    Slade JM; Bickel CS; Modlesky CM; Majumdar S; Dudley GA
    Osteoporos Int; 2005 Mar; 16(3):263-72. PubMed ID: 15338112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Underdevelopment of trabecular bone microarchitecture in the distal femur of nonambulatory children with cerebral palsy becomes more pronounced with distance from the growth plate.
    Modlesky CM; Whitney DG; Singh H; Barbe MF; Kirby JT; Miller F
    Osteoporos Int; 2015 Feb; 26(2):505-12. PubMed ID: 25199575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle volume is related to trabecular and cortical bone architecture in typically developing children.
    Bajaj D; Allerton BM; Kirby JT; Miller F; Rowe DA; Pohlig RT; Modlesky CM
    Bone; 2015 Dec; 81():217-227. PubMed ID: 26187197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low width of tubular bones is associated with increased risk of fragility fracture in elderly men--the MINOS study.
    Szulc P; Munoz F; Duboeuf F; Marchand F; Delmas PD
    Bone; 2006 Apr; 38(4):595-602. PubMed ID: 16249130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study.
    Sornay-Rendu E; Boutroy S; Munoz F; Delmas PD
    J Bone Miner Res; 2007 Mar; 22(3):425-33. PubMed ID: 17181395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive Sublesional Bone Loss Extends into the Second Decade After Spinal Cord Injury.
    Cirnigliaro CM; Myslinski MJ; Asselin P; Hobson JC; Specht A; La Fountaine MF; Kirshblum SC; Forrest GF; Dyson-Hudson T; Spungen AM; Bauman WA
    J Clin Densitom; 2019; 22(2):185-194. PubMed ID: 30503961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats.
    Jiang SD; Jiang LS; Dai LY
    Osteoporos Int; 2006 Oct; 17(10):1552-61. PubMed ID: 16874443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in bone mass, bone structure, bone biomechanical properties, and bone metabolism after spinal cord injury: a 6-month longitudinal study in growing rats.
    Jiang SD; Jiang LS; Dai LY
    Calcif Tissue Int; 2007 Mar; 80(3):167-75. PubMed ID: 17340221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals.
    Eser P; Frotzler A; Zehnder Y; Wick L; Knecht H; Denoth J; Schiessl H
    Bone; 2004 May; 34(5):869-80. PubMed ID: 15121019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of bone loss in paraplegics over 2 years with alendronate.
    Zehnder Y; Risi S; Michel D; Knecht H; Perrelet R; Kraenzlin M; Zäch GA; Lippuner K
    J Bone Miner Res; 2004 Jul; 19(7):1067-74. PubMed ID: 15176988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the determinants of fracture risk among individuals with spinal cord injury.
    Lala D; Craven BC; Thabane L; Papaioannou A; Adachi JD; Popovic MR; Giangregorio LM
    Osteoporos Int; 2014 Jan; 25(1):177-85. PubMed ID: 23812595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.