BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14753774)

  • 1. Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent.
    Borch T; Gerlach R
    J Chromatogr A; 2004 Jan; 1022(1-2):83-94. PubMed ID: 14753774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of narrow-bore high-performance liquid chromatography-diode array detection for the analysis of intermediates of the biological degradation of 2,4,6-trinitrotoluene.
    Ahmad F; Roberts DJ
    J Chromatogr A; 1995 Feb; 693(1):167-75. PubMed ID: 7697160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of explosives and their degradation products in soil environments.
    Halasz A; Groom C; Zhou E; Paquet L; Beaulieu C; Deschamps S; Corriveau A; Thiboutot S; Ampleman G; Dubois C; Hawari J
    J Chromatogr A; 2002 Jul; 963(1-2):411-8. PubMed ID: 12187997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: low-dose hormesis and high-dose mortality.
    Steevens JA; Duke BM; Lotufo GR; Bridges TS
    Environ Toxicol Chem; 2002 Jul; 21(7):1475-82. PubMed ID: 12109749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro.
    Lachance B; Robidoux PY; Hawari J; Ampleman G; Thiboutot S; Sunahara GI
    Mutat Res; 1999 Jul; 444(1):25-39. PubMed ID: 10477337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic transformation of 2,4,6-TNT by bovine ruminal microbes.
    Fleischmann TJ; Walker KC; Spain JC; Hughes JB; Morrie Craig A
    Biochem Biophys Res Commun; 2004 Feb; 314(4):957-63. PubMed ID: 14751225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34).
    Van Aken B; Yoon JM; Schnoor JL
    Appl Environ Microbiol; 2004 Jan; 70(1):508-17. PubMed ID: 14711682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence quenching as an indirect detection method for nitrated explosives.
    Goodpaster JV; McGuffin VL
    Anal Chem; 2001 May; 73(9):2004-11. PubMed ID: 11354482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants.
    Park J; Comfort SD; Shea PJ; Machacek TA
    J Environ Qual; 2004; 33(4):1305-13. PubMed ID: 15254112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation.
    Fuller ME; Hatzinger PB; Rungmakol D; Schuster RL; Steffan RJ
    Environ Toxicol Chem; 2004 Feb; 23(2):313-24. PubMed ID: 14982377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of explosives by Fenton and photo-Fenton processes.
    Liou MJ; Lu MC; Chen JN
    Water Res; 2003 Jul; 37(13):3172-9. PubMed ID: 14509704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclodextrin-assisted capillary electrophoresis for determination of the cyclic nitramine explosives RDX, HMX and CL-20 comparison with high-performance liquid chromatography.
    Groom CA; Halasz A; Paquet L; D'Cruz P; Hawari J
    J Chromatogr A; 2003 May; 999(1-2):17-22. PubMed ID: 12885047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation analyses of a series of TNT-related compounds using the CHO-hprt assay.
    Kennel SJ; Foote LJ; Morris M; Vass AA; Griest WH
    J Appl Toxicol; 2000; 20(6):441-8. PubMed ID: 11180265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of explosives in soil and ground water by liquid chromatography-amperometric detection.
    Hilmi A; Luong JH; Nguyen AL
    J Chromatogr A; 1999 Jun; 844(1-2):97-110. PubMed ID: 10399326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First production-level bioremediation of explosives-contaminated soil in the United States.
    Emery DD; Faessler PC
    Ann N Y Acad Sci; 1997 Nov; 829():326-40. PubMed ID: 9472327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic studies of explosives. 5. Detection and analysis of 2,4,6-trinitrotoluene and its metabolites in urine of munition workers by micro liquid chromatography/mass spectrometry.
    Yinon J; Hwang DG
    Biomed Chromatogr; 1986 Jun; 1(3):123-5. PubMed ID: 3506822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percutaneous absorption of explosives and related compounds: an empirical model of bioavailability of organic nitro compounds from soil.
    Reifenrath WG; Kammen HO; Palmer WG; Major MM; Leach GJ
    Toxicol Appl Pharmacol; 2002 Jul; 182(2):160-8. PubMed ID: 12140179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of urinary metabolites of 2,4,6-trinitrotoluene in rats by liquid chromatography-mass spectometry.
    Yinon J; Hwang DG
    Toxicol Lett; 1985 Aug; 26(2-3):205-9. PubMed ID: 3839946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium.
    Spiker JK; Crawford DL; Crawford RL
    Appl Environ Microbiol; 1992 Sep; 58(9):3199-202. PubMed ID: 1444437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative toxicokinetics of explosive compounds in sheepshead minnows.
    Lotufo GR; Lydy MJ
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):206-14. PubMed ID: 16059748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.