These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 14753893)

  • 1. Intrinsic electron accumulation at clean InN surfaces.
    Mahboob I; Veal TD; McConville CF; Lu H; Schaff WJ
    Phys Rev Lett; 2004 Jan; 92(3):036804. PubMed ID: 14753893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of Fermi-level pinning at cleaved nonpolar InN surfaces.
    Wu CL; Lee HM; Kuo CT; Chen CH; Gwo S
    Phys Rev Lett; 2008 Sep; 101(10):106803. PubMed ID: 18851242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Measurements of Fermi Level Pinning at the Surface of Intrinsically n-Type InGaAs Nanowires.
    Speckbacher M; Treu J; Whittles TJ; Linhart WM; Xu X; Saller K; Dhanak VR; Abstreiter G; Finley JJ; Veal TD; Koblmüller G
    Nano Lett; 2016 Aug; 16(8):5135-42. PubMed ID: 27458736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the surface band bending in In
    Lozac'h M; Ueda S; Liu S; Yoshikawa H; Liwen S; Wang X; Shen B; Sakoda K; Kobayashi K; Sumiya M
    Sci Technol Adv Mater; 2013 Feb; 14(1):015007. PubMed ID: 27877565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant reduction of InN surface electron accumulation: compensation of surface donors by Mg dopants.
    Linhart WM; Chai J; Morris RJ; Dowsett MG; McConville CF; Durbin SM; Veal TD
    Phys Rev Lett; 2012 Dec; 109(24):247605. PubMed ID: 23368381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative band gaps in dilute InNxSb1-x alloys.
    Veal TD; Mahboob I; McConville CF
    Phys Rev Lett; 2004 Apr; 92(13):136801. PubMed ID: 15089635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive studies of the electronic structure of pristine and potassium doped chrysene investigated by electron energy-loss spectroscopy.
    Roth F; Mahns B; Schönfelder R; Hampel S; Nohr M; Büchner B; Knupfer M
    J Chem Phys; 2012 Sep; 137(11):114508. PubMed ID: 22998272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-controlled band positions in CH₃NH₃PbI₃ perovskite films.
    Miller EM; Zhao Y; Mercado CC; Saha SK; Luther JM; Zhu K; Stevanović V; Perkins CL; van de Lagemaat J
    Phys Chem Chem Phys; 2014 Oct; 16(40):22122-30. PubMed ID: 25209217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending.
    Zhang C; Johnson A; Hsu CL; Li LJ; Shih CK
    Nano Lett; 2014 May; 14(5):2443-7. PubMed ID: 24783945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic band structure and Fermi surface of CaB6 studied by angle-resolved photoemission spectroscopy.
    Souma S; Komatsu H; Takahashi T; Kaji R; Sasaki T; Yokoo Y; Akimitsu J
    Phys Rev Lett; 2003 Jan; 90(2):027202. PubMed ID: 12570575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of valence and core excitations in LiFePO(4) and FePO(4).
    Kinyanjui MK; Axmann P; Wohlfahrt-Mehrens M; Moreau P; Boucher F; Kaiser U
    J Phys Condens Matter; 2010 Jul; 22(27):275501. PubMed ID: 21399256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density Functional Theory Modeling of Low-Loss Electron Energy-Loss Spectroscopy in Wurtzite III-Nitride Ternary Alloys.
    Eljarrat A; Sastre X; Peiró F; Estradé S
    Microsc Microanal; 2016 Jun; 22(3):706-16. PubMed ID: 26868876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of defect levels in InN by soft X-ray absorption spectroscopy.
    Petravic M; Deenapanray PN; Fraser MD; Soldatov AV; Yang YW; Anderson PA; Durbin SM
    J Phys Chem B; 2006 Feb; 110(7):2984-7. PubMed ID: 16494298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-Terminated InP (001) Surfaces: Surface Band Bending and Reactivity to Water.
    Moritz DC; Ruiz Alvarado IA; Zare Pour MA; Paszuk A; Frieß T; Runge E; Hofmann JP; Hannappel T; Schmidt WG; Jaegermann W
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47255-47261. PubMed ID: 36209433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.
    Liu Q; March K; Crozier PA
    Ultramicroscopy; 2017 Jul; 178():2-11. PubMed ID: 27432780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The surface states of lithium tetraborate.
    Wang L; Mei WN; Dowben PA
    J Phys Condens Matter; 2013 Jan; 25(4):045014. PubMed ID: 23288512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valence electron energy-loss spectroscopy study of ZrSiO₄ and ZrO₂.
    Jiang N; Spence JC
    Ultramicroscopy; 2013 Nov; 134():68-76. PubMed ID: 23916829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning tunneling microscopy/spectroscopy study of atomic and electronic structures of In2O on InAs and In0.53Ga0.47As(001)-(4×2) surfaces.
    Shen J; Chagarov EA; Feldwinn DL; Melitz W; Santagata NM; Kummel AC; Droopad R; Passlack M
    J Chem Phys; 2010 Oct; 133(16):164704. PubMed ID: 21033816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.