These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 14753959)

  • 1. Transport in ultraclean YBa2Cu3O7: neither unitary nor born impurity scattering.
    Hill RW; Lupien C; Sutherland M; Boaknin E; Hawthorn DG; Proust C; Ronning F; Taillefer L; Liang R; Bonn DA; Hardy WN
    Phys Rev Lett; 2004 Jan; 92(2):027001. PubMed ID: 14753959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature thermal conductivity of superconductors with gap nodes.
    Löfwander T; Fogelström M
    Phys Rev Lett; 2005 Sep; 95(10):107006. PubMed ID: 16196957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer quasiparticle transport in the vortex state of josephson coupled superconductors.
    Vekhter I; Bulaevskii LN; Koshelev AE; Maley MP
    Phys Rev Lett; 2000 Feb; 84(6):1296-9. PubMed ID: 11017502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap opening in the zeroth Landau level in gapped graphene: pseudo-Zeeman splitting in an angular magnetic field.
    Tahir M; Sabeeh K
    J Phys Condens Matter; 2012 Apr; 24(13):135005. PubMed ID: 22392807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nodal structure of quasi-two-dimensional superconductors probed by a magnetic field.
    Vorontsov A; Vekhter I
    Phys Rev Lett; 2006 Jun; 96(23):237001. PubMed ID: 16803392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle dependence of the transverse thermal conductivity in YBa(2)Cu(3)O(7) single crystals: Doppler shift and Andreev scattering contributions.
    Ocaña R; Esquinazi P
    Phys Rev Lett; 2001 Oct; 87(16):167006. PubMed ID: 11690230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impurity-Induced Anomalous Thermal Hall Effect in Chiral Superconductors.
    Ngampruetikorn V; Sauls JA
    Phys Rev Lett; 2020 Apr; 124(15):157002. PubMed ID: 32357039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Berry phases and the intrinsic thermal Hall effect in high-temperature cuprate superconductors.
    Cvetkovic V; Vafek O
    Nat Commun; 2015 Mar; 6():6518. PubMed ID: 25758469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared hall effect in high- T(c) superconductors: evidence for non-fermi-liquid hall scattering.
    Cerne J; Grayson M; Schmadel DC; Jenkins GS; Drew HD; Hughes R; Dabkowski A; Preston JS; Kung P
    Phys Rev Lett; 2000 Apr; 84(15):3418-21. PubMed ID: 11019104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal heat transport in Sr2RuO4.
    Suzuki M; Tanatar MA; Kikugawa N; Mao ZQ; Maeno Y; Ishiguro T
    Phys Rev Lett; 2002 Jun; 88(22):227004. PubMed ID: 12059449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiband order parameters for the PrOs4Sb12 and PrRu4Sb12 skutterudite superconductors from thermal conductivity measurements.
    Hill RW; Li S; Maple MB; Taillefer L
    Phys Rev Lett; 2008 Dec; 101(23):237005. PubMed ID: 19113585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic-field-induced localization of quasiparticles in underdoped La(2-x)SrxCuO4 single crystals.
    Sun XF; Komiya S; Takeya J; Ando Y
    Phys Rev Lett; 2003 Mar; 90(11):117004. PubMed ID: 12688958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.
    Hanaguri T; Kohsaka Y; Ono M; Maltseva M; Coleman P; Yamada I; Azuma M; Takano M; Ohishi K; Takagi H
    Science; 2009 Feb; 323(5916):923-6. PubMed ID: 19164709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal expansion and impurity effects on lattice thermal conductivity of solid argon.
    Chen Y; Lukes JR; Li D; Yang J; Wu Y
    J Chem Phys; 2004 Feb; 120(8):3841-6. PubMed ID: 15268549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconventional superconductivity in CeIrIn5 and CeCoIn5: specific heat and thermal conductivity studies.
    Movshovich R; Jaime M; Thompson JD; Petrovic C; Fisk Z; Pagliuso PG; Sarrao JL
    Phys Rev Lett; 2001 May; 86(22):5152-5. PubMed ID: 11384444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-consistent electronic structure of multiquantum vortices in superconductors at T ≪ Tc.
    Silaev MA; Silaeva VA
    J Phys Condens Matter; 2013 Jun; 25(22):225702. PubMed ID: 23673423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasiparticle conductivities in disordered d-wave superconductors.
    Fabrizio M; Dell'Anna L; Castellani C
    Phys Rev Lett; 2002 Feb; 88(7):076603. PubMed ID: 11863927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of weak-limit quasiparticle scattering via broadband microwave spectroscopy of a d-wave superconductor.
    Turner PJ; Harris R; Kamal S; Hayden ME; Broun DM; Morgan DC; Hosseini A; Dosanjh P; Mullins GK; Preston JS; Liang R; Bonn DA; Hardy WN
    Phys Rev Lett; 2003 Jun; 90(23):237005. PubMed ID: 12857284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-induced thermal metal-to-insulator transition in underdoped La(2-x)Sr(x)CuO(4+delta).
    Hawthorn DG; Hill RW; Proust C; Ronning F; Sutherland M; Boaknin E; Lupien C; Tanatar MA; Paglione J; Wakimoto S; Zhang H; Taillefer L; Kimura T; Nohara M; Takagi H; Hussey NE
    Phys Rev Lett; 2003 May; 90(19):197004. PubMed ID: 12785975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for nodal quasiparticles in the nonmagnetic superconductor YNi2B2C via field-angle-dependent heat capacity.
    Park T; Salamon MB; Choi EM; Kim HJ; Lee SI
    Phys Rev Lett; 2003 May; 90(17):177001. PubMed ID: 12786095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.