These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 14754017)

  • 1. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes.
    Korovyanko OJ; Sheng CX; Vardeny ZV; Dalton AB; Baughman RH
    Phys Rev Lett; 2004 Jan; 92(1):017403. PubMed ID: 14754017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes.
    Gao B; Hartland GV; Huang L
    ACS Nano; 2012 Jun; 6(6):5083-90. PubMed ID: 22577898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High energetic excitons in carbon nanotubes directly probe charge-carriers.
    Soavi G; Scotognella F; Viola D; Hefner T; Hertel T; Cerullo G; Lanzani G
    Sci Rep; 2015 May; 5():9681. PubMed ID: 25959462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantized bimolecular auger recombination of excitons in single-walled carbon nanotubes.
    Huang L; Krauss TD
    Phys Rev Lett; 2006 Feb; 96(5):057407. PubMed ID: 16486987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope.
    Jung Y; Slipchenko MN; Liu CH; Ribbe AE; Zhong Z; Yang C; Cheng JX
    Phys Rev Lett; 2010 Nov; 105(21):217401. PubMed ID: 21231351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy.
    Hirori H; Matsuda K; Miyauchi Y; Maruyama S; Kanemitsu Y
    Phys Rev Lett; 2006 Dec; 97(25):257401. PubMed ID: 17280391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intense terahertz pulse induced exciton generation in carbon nanotubes.
    Watanabe S; Minami N; Shimano R
    Opt Express; 2011 Jan; 19(2):1528-38. PubMed ID: 21263694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state 13C NMR assignment of carbon resonances on metallic and semiconducting single-walled carbon nanotubes.
    Engtrakul C; Davis MF; Mistry K; Larsen BA; Dillon AC; Heben MJ; Blackburn JL
    J Am Chem Soc; 2010 Jul; 132(29):9956-7. PubMed ID: 20593776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast terahertz probes of interacting dark excitons in chirality-specific semiconducting single-walled carbon nanotubes.
    Luo L; Chatzakis I; Patz A; Wang J
    Phys Rev Lett; 2015 Mar; 114(10):107402. PubMed ID: 25815965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.
    Huang H; Kajiura H; Maruyama R; Kadono K; Noda K
    J Phys Chem B; 2006 Mar; 110(10):4686-90. PubMed ID: 16526703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of charged excitons in electronically and morphologically homogeneous single-walled carbon nanotubes.
    Bai Y; Olivier JH; Bullard G; Liu C; Therien MJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):674-679. PubMed ID: 29311334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method of separating metallic and semiconducting single-walled carbon nanotubes based on molecular charge transfer.
    Voggu R; Rao KV; George SJ; Rao CN
    J Am Chem Soc; 2010 Apr; 132(16):5560-1. PubMed ID: 20361795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption spectroscopy of individual single-walled carbon nanotubes.
    Berciaud S; Cognet L; Poulin P; Weisman RB; Lounis B
    Nano Lett; 2007 May; 7(5):1203-7. PubMed ID: 17385932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of high-density one-dimensional excitons in carbon nanotubes under high laser excitation.
    Ostojic GN; Zaric S; Kono J; Moore VC; Hauge RH; Smalley RE
    Phys Rev Lett; 2005 Mar; 94(9):097401. PubMed ID: 15783997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound.
    Toyoda S; Yamaguchi Y; Hiwatashi M; Tomonari Y; Murakami H; Nakashima N
    Chem Asian J; 2007 Jan; 2(1):145-9. PubMed ID: 17441147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.