These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14754033)

  • 1. Wide-band direct measurement of thermal fluctuations in an interferometer.
    Numata K; Ando M; Yamamoto K; Otsuka S; Tsubono K
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):260602. PubMed ID: 14754033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mirror-orientation noise in a Fabry-Perot interferometer gravitational wave detector.
    Kawamura S; Zucker ME
    Appl Opt; 1994 Jun; 33(18):3912-8. PubMed ID: 20935736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical motion sensor for resonant-bar gravitational wave antennas.
    Richard JP; Pang Y; Hamilton JJ
    Appl Opt; 1992 Apr; 31(10):1641-5. PubMed ID: 20720800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection.
    Petrov N; Pustovoit V
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelastic-damping noise from sapphire mirrors in a fundamental-noise-limited interferometer.
    Black ED; Villar A; Libbrecht KG
    Phys Rev Lett; 2004 Dec; 93(24):241101. PubMed ID: 15697789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1/
    Nelson AM; Sanjuan J; Guzmán F
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Mechanical Loss TiO_{2}:GeO_{2} Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers.
    Vajente G; Yang L; Davenport A; Fazio M; Ananyeva A; Zhang L; Billingsley G; Prasai K; Markosyan A; Bassiri R; Fejer MM; Chicoine M; Schiettekatte F; Menoni CS
    Phys Rev Lett; 2021 Aug; 127(7):071101. PubMed ID: 34459624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion-free, multiple-beam interferometer.
    Troitski YV
    Appl Opt; 1995 Aug; 34(22):4717-22. PubMed ID: 21052307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurement of thermal fluctuation of high-Q pendulum.
    Agatsuma K; Uchiyama T; Yamamoto K; Ohashi M; Kawamura S; Miyoki S; Miyakawa O; Telada S; Kuroda K
    Phys Rev Lett; 2010 Jan; 104(4):040602. PubMed ID: 20366696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-controlled Fabry-Perot interferometer for Brillouin spectroscopy.
    Asenbaum A
    Appl Opt; 1979 Feb; 18(4):540-4. PubMed ID: 20208759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shot noise in gravitational-wave detectors with Fabry-Perot arms.
    Lyons TT; Regehr MW; Raab FJ
    Appl Opt; 2000 Dec; 39(36):6761-70. PubMed ID: 18354690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector.
    Uchiyama T; Miyoki S; Telada S; Yamamoto K; Ohashi M; Agatsuma K; Arai K; Fujimoto MK; Haruyama T; Kawamura S; Miyakawa O; Ohishi N; Saito T; Shintomi T; Suzuki T; Takahashi R; Tatsumi D
    Phys Rev Lett; 2012 Apr; 108(14):141101. PubMed ID: 22540781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subhertz interferometry at the quantum noise limit.
    Yang P; Xie B; Feng S
    Opt Lett; 2019 May; 44(9):2366-2369. PubMed ID: 31042224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom.
    Somiya K; Miyakawa O
    Appl Opt; 2010 Aug; 49(23):4335-42. PubMed ID: 20697434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modal frequency degeneracy in thermally loaded optical resonators.
    Bullington AL; Lantz BT; Fejer MM; Byer RL
    Appl Opt; 2008 May; 47(15):2840-51. PubMed ID: 18493291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer.
    Zhu M; Wei H; Zhao S; Wu X; Li Y
    Appl Opt; 2015 May; 54(14):4594-601. PubMed ID: 25967521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant speed meter for gravitational-wave detection.
    Nishizawa A; Kawamura S; Sakagami MA
    Phys Rev Lett; 2008 Aug; 101(8):081101. PubMed ID: 18764598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable multipass Fabry-Perot interferometer: design and analysis.
    Roychoudhuri C; Hercher M
    Appl Opt; 1977 Sep; 16(9):2514-20. PubMed ID: 20168960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers.
    Mullavey AJ; Slagmolen BJ; Miller J; Evans M; Fritschel P; Sigg D; Waldman SJ; Shaddock DA; McClelland DE
    Opt Express; 2012 Jan; 20(1):81-9. PubMed ID: 22274331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.