These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14754065)

  • 1. In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation.
    Yokota T; Murayama M; Howe JM
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):265504. PubMed ID: 14754065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of heat and electron irradiation on the melting behavior of Al-Si alloy particles and motion of the Al nanosphere within.
    Howe JM; Yokota T; Murayama M; Jesser WA
    J Electron Microsc (Tokyo); 2004; 53(2):107-14. PubMed ID: 15180204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ observation of the melting and sintering of submicron-sized bismuth particles.
    Diewald S; Feldmann C
    Nanotechnology; 2009 Mar; 20(12):125704. PubMed ID: 19420481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are electron tweezers possible?
    Oleshko VP; Howe JM
    Ultramicroscopy; 2011 Nov; 111(11):1599-606. PubMed ID: 21946000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the electron beam on the thermal stability of gold nanorods studied by environmental transmission electron microscopy.
    Albrecht W; van de Glind A; Yoshida H; Isozaki Y; Imhof A; van Blaaderen A; de Jongh PE; de Jong KP; Zečević J; Takeda S
    Ultramicroscopy; 2018 Oct; 193():97-103. PubMed ID: 29960259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 Mar; 109(8):3104-11. PubMed ID: 16851329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of 2000 K Class High Temperature In Situ Transmission Electron Microscopy of Nanostructured Materials via Resistive Heating.
    Terasawa TO; Kikuchi S; Tezura M; Kizuka T
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2848-851. PubMed ID: 29668196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys.
    Nogita K; McDonald SD; Tsujimoto K; Yasuda K; Dahle AK
    J Electron Microsc (Tokyo); 2004; 53(4):361-9. PubMed ID: 15585468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behaviour of TEM metal grids during in-situ heating experiments.
    Zhang Z; Su D
    Ultramicroscopy; 2009 May; 109(6):766-74. PubMed ID: 19304394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the thermal behavior of omeprazole and other sulfoxides.
    Rosenblatt KM; Bunjes H; Seeling A; Oelschläger H
    Pharmazie; 2005 Jul; 60(7):503-7. PubMed ID: 16076075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of electron beam irradiation on the temperature of single AuGe nanoparticles in a TEM.
    Kryshtal A; Mielczarek M; Pawlak J
    Ultramicroscopy; 2022 Mar; 233():113459. PubMed ID: 34942542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.
    Bäcke O; Lindqvist C; de Zerio Mendaza AD; Gustafsson S; Wang E; Andersson MR; Müller C; Kristiansen PM; Olsson E
    Ultramicroscopy; 2017 Feb; 173():16-23. PubMed ID: 27902941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.
    Bäcke O; Lindqvist C; de Zerio Mendaza AD; Gustafsson S; Wang E; Andersson MR; Müller C; Kristiansen PM; Olsson E
    Ultramicroscopy; 2017 May; 176():23-30. PubMed ID: 28341555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion beam heating of kinetically constrained nanomaterials.
    Cen X; van Benthem K
    Ultramicroscopy; 2018 Mar; 186():30-34. PubMed ID: 29248869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission electron microscopy and X-Ray diffraction analysis of aluminum-induced crystallization of amorphous silicon in alpha-Si:H/Al and Al/alpha-Si:H structures.
    Kishore R; Hotz C; Naseem HA; Brown WD
    Microsc Microanal; 2005 Apr; 11(2):133-7. PubMed ID: 15817142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope.
    Leontowich AF; Hitchcock AP
    Analyst; 2012 Jan; 137(2):370-5. PubMed ID: 22080936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ TEM observation of preferential amorphization in single crystal Si nanowire.
    Su J; Zhu X
    Nanotechnology; 2018 Jun; 29(23):235703. PubMed ID: 29543190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical behaviour of nanocrystals in transmission electron microscopy: size, temperature or irradiation effects.
    Buffat PA
    Philos Trans A Math Phys Eng Sci; 2003 Feb; 361(1803):291-5. PubMed ID: 12639384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures.
    Huang CW; Hsin CL; Wang CW; Chu FH; Kao CY; Chen JY; Huang YT; Lu KC; Wu WW; Chen LJ
    Nanoscale; 2012 Aug; 4(15):4702-6. PubMed ID: 22744608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.