These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 14754070)
1. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. Liu ZP; Gong XQ; Kohanoff J; Sanchez C; Hu P Phys Rev Lett; 2003 Dec; 91(26 Pt 1):266102. PubMed ID: 14754070 [TBL] [Abstract][Full Text] [Related]
2. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites. Green IX; Tang W; Neurock M; Yates JT Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536 [TBL] [Abstract][Full Text] [Related]
3. The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. Wang YG; Yoon Y; Glezakou VA; Li J; Rousseau R J Am Chem Soc; 2013 Jul; 135(29):10673-83. PubMed ID: 23782230 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). Molina LM; Rasmussen MD; Hammer B J Chem Phys; 2004 Apr; 120(16):7673-80. PubMed ID: 15267678 [TBL] [Abstract][Full Text] [Related]
5. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Widmann D; Behm RJ Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537 [TBL] [Abstract][Full Text] [Related]
6. Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): a density functional theory study on the intrinsic role of water. Liu LM; McAllister B; Ye HQ; Hu P J Am Chem Soc; 2006 Mar; 128(12):4017-22. PubMed ID: 16551110 [TBL] [Abstract][Full Text] [Related]
7. The critical role of water at the gold-titania interface in catalytic CO oxidation. Saavedra J; Doan HA; Pursell CJ; Grabow LC; Chandler BD Science; 2014 Sep; 345(6204):1599-602. PubMed ID: 25190716 [TBL] [Abstract][Full Text] [Related]
8. Origin of Oxide sensitivity in gold-based catalysts: a first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2. Wang CM; Fan KN; Liu ZP J Am Chem Soc; 2007 Mar; 129(9):2642-7. PubMed ID: 17290994 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO₂ catalyst. Green IX; Tang W; Neurock M; Yates JT Science; 2011 Aug; 333(6043):736-9. PubMed ID: 21817048 [TBL] [Abstract][Full Text] [Related]
10. Enhanced catalytic activity for CO oxidation by the metal-oxide perimeter of TiO Lee SW; Song JT; Kim J; Oh J; Park JY Nanoscale; 2018 Feb; 10(8):3911-3917. PubMed ID: 29423473 [TBL] [Abstract][Full Text] [Related]
11. CO oxidation on TiO(2) (110) supported subnanometer gold clusters: size and shape effects. Li L; Gao Y; Li H; Zhao Y; Pei Y; Chen Z; Zeng XC J Am Chem Soc; 2013 Dec; 135(51):19336-46. PubMed ID: 24283343 [TBL] [Abstract][Full Text] [Related]
12. Interface-confined oxide nanostructures for catalytic oxidation reactions. Fu Q; Yang F; Bao X Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033 [TBL] [Abstract][Full Text] [Related]
13. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase. Wang L; Wang H; Rice AE; Zhang W; Li X; Chen M; Meng X; Lewis JP; Xiao FS J Phys Chem Lett; 2015 Jun; 6(12):2345-9. PubMed ID: 26266615 [TBL] [Abstract][Full Text] [Related]
14. CO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters. Kim HY; Henkelman G J Phys Chem Lett; 2012 Aug; 3(16):2194-9. PubMed ID: 26295770 [TBL] [Abstract][Full Text] [Related]
15. Role of nanostructured dual-oxide supports in enhanced catalytic activity: theory of CO oxidation over Au/IrO2/TiO2. Liu ZP; Jenkins SJ; King DA Phys Rev Lett; 2004 Oct; 93(15):156102. PubMed ID: 15524905 [TBL] [Abstract][Full Text] [Related]
16. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation. Ali S; Fu Liu T; Lian Z; Li B; Sheng Su D Phys Chem Chem Phys; 2017 Aug; 19(33):22344-22354. PubMed ID: 28805223 [TBL] [Abstract][Full Text] [Related]
17. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts. Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation. Joshi AM; Delgass WN; Thomson KT J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917 [TBL] [Abstract][Full Text] [Related]
19. Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. Liu ZP; Hu P; Alavi A J Am Chem Soc; 2002 Dec; 124(49):14770-9. PubMed ID: 12465990 [TBL] [Abstract][Full Text] [Related]
20. Crystal-plane-dependent metal-support interaction in Au/TiO2. Liu L; Ge C; Zou W; Gu X; Gao F; Dong L Phys Chem Chem Phys; 2015 Feb; 17(7):5133-40. PubMed ID: 25601595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]