These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 14754075)

  • 1. New mixed alkali effect in the ac conductivity of ion-conducting glasses.
    Cramer C; Brunklaus S; Ratai E; Gao Y
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):266601. PubMed ID: 14754075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical conductivity and relaxation in mixed alkali tellurite glasses.
    Ghosh S; Ghosh A
    J Chem Phys; 2007 May; 126(18):184509. PubMed ID: 17508813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniversal features of the ac conductivity in ion conducting glasses.
    Roling B; Martiny C
    Phys Rev Lett; 2000 Aug; 85(6):1274-7. PubMed ID: 10991530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ac conductivity spectra of alkali tellurite glasses: composition-dependent deviations from the Summerfield scaling.
    Murugavel S; Roling B
    Phys Rev Lett; 2002 Nov; 89(19):195902. PubMed ID: 12443130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.
    Martin SW; Bischoff C; Schuller K
    J Phys Chem B; 2015 Dec; 119(51):15738-51. PubMed ID: 26618389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.
    Bischoff C; Schuller K; Dunlap N; Martin SW
    J Phys Chem B; 2014 Feb; 118(7):1943-53. PubMed ID: 24447260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mixed alkali effect in ionically conducting glasses revisited: a study by molecular dynamics simulation.
    Habasaki J; Ngai KL
    Phys Chem Chem Phys; 2007 Sep; 9(33):4673-89. PubMed ID: 17700869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of lithium ions in borotellurite mixed former glasses: correlation between the characteristic length scales of mobile ions and glass network structural units.
    Shaw A; Ghosh A
    J Chem Phys; 2014 Oct; 141(16):164504. PubMed ID: 25362322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Li+ ions in strontium metaphosphate glasses.
    Dutta A; Ghosh A
    J Chem Phys; 2007 Oct; 127(14):144504. PubMed ID: 17935406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of silver ions in AgI doped Ag
    Palui A; Shaw A; Ghosh A
    Phys Chem Chem Phys; 2016 Sep; 18(37):25937-25945. PubMed ID: 27711576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing two contributions to the nearly constant loss in ion-conducting glasses.
    Sidebottom DL; Murray-Krezan CM
    Phys Rev Lett; 2002 Nov; 89(19):195901. PubMed ID: 12443129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features.
    Murugavel S; Vaid C; Bhadram VS; Narayana C
    J Phys Chem B; 2010 Oct; 114(42):13381-5. PubMed ID: 20925353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site discrimination in mixed-alkali glasses studied by cross-polarization NMR.
    Puls SP; Eckert H
    J Phys Chem B; 2006 Jul; 110(29):14253-61. PubMed ID: 16854129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Ag
    Hall A; Swenson J; Karlsson C; Adams S; Bowron DT
    J Phys Condens Matter; 2007 Oct; 19(41):415115. PubMed ID: 28192327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.
    Novy M; Avila-Paredes H; Kim S; Sen S
    J Chem Phys; 2015 Dec; 143(24):241104. PubMed ID: 26723583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Cooperativity blockage" in the mixed alkali effect as revealed by molecular-dynamics simulations of alkali metasilicate glass.
    Habasaki J; Ngai KL; Hiwatari Y
    J Chem Phys; 2004 Jul; 121(2):925-34. PubMed ID: 15260624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR and conductivity studies of the mixed glass former effect in lithium borophosphate glasses.
    Storek M; Böhmer R; Martin SW; Larink D; Eckert H
    J Chem Phys; 2012 Sep; 137(12):124507. PubMed ID: 23020343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and its Assessment.
    Lodesani F; Menziani MC; Hijiya H; Takato Y; Urata S; Pedone A
    Sci Rep; 2020 Feb; 10(1):2906. PubMed ID: 32076082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.
    Padmaja G; Kistaiah P
    J Phys Chem A; 2009 Mar; 113(11):2397-404. PubMed ID: 19235995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy factor in the hopping frequency for ionic conduction in oxide glasses induced by energetic clustering.
    Garcia-Belmonte G; Bisquert J
    J Chem Phys; 2005 Aug; 123(7):074504. PubMed ID: 16229598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.