These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 14754191)
1. Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime. Li Z; Wang H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061206. PubMed ID: 14754191 [TBL] [Abstract][Full Text] [Related]
2. Transport properties of small spherical particles. Wang H Ann N Y Acad Sci; 2009 Apr; 1161():484-93. PubMed ID: 19426341 [TBL] [Abstract][Full Text] [Related]
3. Understanding the mobility of nonspherical particles in the free molecular regime. Li M; Mulholland GW; Zachariah MR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022112. PubMed ID: 25353427 [TBL] [Abstract][Full Text] [Related]
4. Drag force, diffusion coefficient, and electric mobility of small particles. II. Application. Li Z; Wang H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061207. PubMed ID: 14754192 [TBL] [Abstract][Full Text] [Related]
5. Thermophoretic force and velocity of nanoparticles in the free molecule regime. Li Z; Wang H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021205. PubMed ID: 15447483 [TBL] [Abstract][Full Text] [Related]
6. Drag force and transport property of a small cylinder in free molecule flow: A gas-kinetic theory analysis. Liu C; Li Z; Wang H Phys Rev E; 2016 Aug; 94(2-1):023102. PubMed ID: 27627388 [TBL] [Abstract][Full Text] [Related]
7. Thermophoretic force on micro- and nanoparticles in dilute binary gas mixtures. Wang J; Li Z Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021201. PubMed ID: 21928982 [TBL] [Abstract][Full Text] [Related]
8. Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force. Pierce F; Sorensen CM; Chakrabarti A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021411. PubMed ID: 17025429 [TBL] [Abstract][Full Text] [Related]
9. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. Larriba C; Hogan CJ J Phys Chem A; 2013 May; 117(19):3887-901. PubMed ID: 23488939 [TBL] [Abstract][Full Text] [Related]
10. Transport coefficients of solid particles immersed in a viscous gas. Garzó V; Fullmer WD; Hrenya CM; Yin X Phys Rev E; 2016 Jan; 93(1):012905. PubMed ID: 26871141 [TBL] [Abstract][Full Text] [Related]
11. Mobility of permeable fractal agglomerates in slip regime. Vainshtein P; Shapiro M J Colloid Interface Sci; 2005 Apr; 284(2):501-9. PubMed ID: 15780288 [TBL] [Abstract][Full Text] [Related]
12. Ion attachment rates and collection forces on dust particles in a plasma sheath with finite ion inertia and mobility. Ono T; Kortshagen UR; Hogan CJ Phys Rev E; 2020 Dec; 102(6-1):063212. PubMed ID: 33465977 [TBL] [Abstract][Full Text] [Related]
13. Thermophoretic force on nanocylinders in the free molecule regime. Wang J; Luo S; Xia G Phys Rev E; 2017 Mar; 95(3-1):033101. PubMed ID: 28415262 [TBL] [Abstract][Full Text] [Related]
15. Drag in a resonantly driven polariton fluid. Berceanu AC; Cancellieri E; Marchetti FM J Phys Condens Matter; 2012 Jun; 24(23):235802. PubMed ID: 22588118 [TBL] [Abstract][Full Text] [Related]
16. Slow approach to steady motion of a concave body in a free-molecular gas. Tsuji T; Arai J; Kawano S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012130. PubMed ID: 26274147 [TBL] [Abstract][Full Text] [Related]
17. Self-diffusion in granular gases: Green-Kubo versus Chapman-Enskog. Brilliantov NV; Pöschel T Chaos; 2005 Jun; 15(2):26108. PubMed ID: 16035910 [TBL] [Abstract][Full Text] [Related]
18. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach. Liu Y; Cain JP; Wang H; Laskin A J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118 [TBL] [Abstract][Full Text] [Related]
19. Recent developments in the kinetic theory of nucleation. Ruckenstein E; Djikaev YS Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628 [TBL] [Abstract][Full Text] [Related]
20. Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations. Khalil N; Garzó V J Chem Phys; 2014 Apr; 140(16):164901. PubMed ID: 24784304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]