These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 14754211)

  • 21. Computer simulation of liquid-vapor coexistence of confined quantum fluids.
    Trejos VM; Gil-Villegas A; Martinez A
    J Chem Phys; 2013 Nov; 139(18):184505. PubMed ID: 24320282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase diagram of the Gaussian-core model.
    Prestipino S; Saija F; Giaquinta PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):050102. PubMed ID: 16089510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids.
    Kim JM; Castañeda-Priego R; Liu Y; Wagner NJ
    J Chem Phys; 2011 Feb; 134(6):064904. PubMed ID: 21322731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasibinary amorphous phase in a three-dimensional system of particles with repulsive-shoulder interactions.
    Fomin YD; Gribova NV; Ryzhov VN; Stishov SM; Frenkel D
    J Chem Phys; 2008 Aug; 129(6):064512. PubMed ID: 18715090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase behavior and thermodynamic anomalies of core-softened fluids.
    Wilding NB; Magee JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 1):031509. PubMed ID: 12366122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional systems with competing interactions: microphase formation versus liquid-vapour phase separation.
    Schwanzer DF; Kahl G
    J Phys Condens Matter; 2010 Oct; 22(41):415103. PubMed ID: 21386593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of inhomogeneous attractive and repulsive hard-core yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study.
    You FQ; Yu YX; Gao GH
    J Phys Chem B; 2005 Mar; 109(8):3512-8. PubMed ID: 16851387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integral equation study of soft-repulsive dimeric fluids.
    Munaò G; Saija F
    J Phys Condens Matter; 2017 Mar; 29(11):115101. PubMed ID: 28155850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relation between flow enhancement factor and structure for core-softened fluids inside nanotubes.
    Bordin JR; Diehl A; Barbosa MC
    J Phys Chem B; 2013 Jun; 117(23):7047-56. PubMed ID: 23692639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bilayer crystals of charged magnetic dipoles: structure and phonon spectrum.
    Ramos IR; Ferreira WP; Munarin FF; Farias GA; Peeters FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051404. PubMed ID: 23004758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid-liquid phase transition for an attractive isotropic potential with wide repulsive range.
    Malescio G; Franzese G; Skibinsky A; Buldyrev SV; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061504. PubMed ID: 16089740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microscopic structure and thermodynamics of a core-softened model fluid: insights from grand canonical Monte Carlo simulations and integral equations theory.
    Pizio O; Dominguez H; Duda Y; Sokołowski S
    J Chem Phys; 2009 May; 130(17):174504. PubMed ID: 19425787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonequilibrium structures and slow dynamics in a two-dimensional spin system with competing long-range and short-range interactions.
    Osenda O; Tamarit FA; Cannas SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021114. PubMed ID: 19792084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Density and structural anomalies in soft-repulsive dimeric fluids.
    Munaó G; Saija F
    Phys Chem Chem Phys; 2016 Apr; 18(14):9484-9. PubMed ID: 26980401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computer simulations of a two-dimensional system with competing interactions.
    Stoycheva AD; Singer SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036706. PubMed ID: 11909306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Obtaining effective pair potentials in colloidal monolayers using a thermodynamically consistent inversion scheme.
    Law AD; Buzza DM
    Langmuir; 2010 May; 26(10):7107-16. PubMed ID: 20405861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Softness dependence of the anomalies for the continuous shouldered well potential.
    Vilaseca P; Franzese G
    J Chem Phys; 2010 Aug; 133(8):084507. PubMed ID: 20815580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of perpendicular external magnetic field on microstructures of monolayer composed of ferromagnetic particles: analysis by means of quasi-two-dimensional Monte Carlo simulation.
    Aoshima M; Satoh A; Chantrell RW
    J Colloid Interface Sci; 2008 Jul; 323(1):158-68. PubMed ID: 18452934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase diagrams of hard-core repulsive Yukawa particles.
    Hynninen AP; Dijkstra M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021407. PubMed ID: 14524973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melting of colloidal molecular crystals on triangular lattices.
    Sarlah A; Franosch T; Frey E
    Phys Rev Lett; 2005 Aug; 95(8):088302. PubMed ID: 16196907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.