These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 14754252)
1. Synchronization and symmetry-breaking bifurcations in constructive networks of coupled chaotic oscillators. Jiang Y; Lozada-Cassou M; Vinet A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065201. PubMed ID: 14754252 [TBL] [Abstract][Full Text] [Related]
2. Dynamic synchronization of a time-evolving optical network of chaotic oscillators. Cohen AB; Ravoori B; Sorrentino F; Murphy TE; Ott E; Roy R Chaos; 2010 Dec; 20(4):043142. PubMed ID: 21198112 [TBL] [Abstract][Full Text] [Related]
3. Generalized correlated states in a ring of coupled nonlinear oscillators with a local injection. Kouomou YC; Woafo P Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066201. PubMed ID: 12513378 [TBL] [Abstract][Full Text] [Related]
4. Amplitude and phase effects on the synchronization of delay-coupled oscillators. D'Huys O; Vicente R; Danckaert J; Fischer I Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097 [TBL] [Abstract][Full Text] [Related]
5. Complete periodic synchronization in coupled systems. Zou W; Zhan M Chaos; 2008 Dec; 18(4):043115. PubMed ID: 19123625 [TBL] [Abstract][Full Text] [Related]
6. Symmetry-breaking Hopf bifurcations to 1-, 2-, and 3-tori in small-aspect-ratio counterrotating Taylor-Couette flow. Altmeyer S; Do Y; Marques F; Lopez JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046316. PubMed ID: 23214686 [TBL] [Abstract][Full Text] [Related]
7. Synchronization and propagation of bursts in networks of coupled map neurons. Tanaka G; Ibarz B; Sanjuan MA; Aihara K Chaos; 2006 Mar; 16(1):013113. PubMed ID: 16599744 [TBL] [Abstract][Full Text] [Related]
8. Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization. Fu C; Lin W; Huang L; Wang X Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052908. PubMed ID: 25353862 [TBL] [Abstract][Full Text] [Related]
9. Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states. Khatun AA; Muthanna YA; Punetha N; Jafri HH Phys Rev E; 2024 Mar; 109(3-1):034208. PubMed ID: 38632727 [TBL] [Abstract][Full Text] [Related]
10. Controlling synchronous patterns in complex networks. Lin W; Fan H; Wang Y; Ying H; Wang X Phys Rev E; 2016 Apr; 93():042209. PubMed ID: 27176295 [TBL] [Abstract][Full Text] [Related]
11. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Choe CU; Dahms T; Hövel P; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621 [TBL] [Abstract][Full Text] [Related]
12. Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems. Postlethwaite CM; Brown G; Silber M Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120467. PubMed ID: 23960225 [TBL] [Abstract][Full Text] [Related]
13. Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Huang L; Chen Q; Lai YC; Pecora LM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036204. PubMed ID: 19905197 [TBL] [Abstract][Full Text] [Related]
14. From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems. Hu G; Zhang Y; Cerdeira HA; Chen S Phys Rev Lett; 2000 Oct; 85(16):3377-80. PubMed ID: 11030900 [TBL] [Abstract][Full Text] [Related]
15. Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators. Chembo Kouomou Y; Woafo P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046205. PubMed ID: 12786458 [TBL] [Abstract][Full Text] [Related]
16. Transcritical riddling in a system of coupled maps. Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735 [TBL] [Abstract][Full Text] [Related]
17. A group-theoretic approach to rings of coupled biological oscillators. Collins JJ; Stewart I Biol Cybern; 1994; 71(2):95-103. PubMed ID: 8068779 [TBL] [Abstract][Full Text] [Related]
18. Complex localization mechanisms in networks of coupled oscillators: Two case studies. Nicolaou ZG; Bramburger JJ Chaos; 2024 Jan; 34(1):. PubMed ID: 38252783 [TBL] [Abstract][Full Text] [Related]
19. Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators. Liu W; Volkov E; Xiao J; Zou W; Zhan M; Yang J Chaos; 2012 Sep; 22(3):033144. PubMed ID: 23020483 [TBL] [Abstract][Full Text] [Related]
20. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks. Wang Z; Campbell SA Chaos; 2017 Nov; 27(11):114316. PubMed ID: 29195320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]