These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 14754277)
1. Crossover between special and ordinary transitions in random semi-infinite Ising-like systems. Usatenko Z; Hu CK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066115. PubMed ID: 14754277 [TBL] [Abstract][Full Text] [Related]
2. Critical behavior of semi-infinite random systems at the special surface transition. Usatenko Z; Hu CK Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066103. PubMed ID: 12188779 [TBL] [Abstract][Full Text] [Related]
3. Surface critical behavior of random systems: ordinary transition. Usatenko ZE; Shpot MA; Hu CK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056102. PubMed ID: 11414956 [TBL] [Abstract][Full Text] [Related]
4. Critical adsorption of polymers in a medium with long-range correlated quenched disorder. Usatenko Z; Ciach A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051801. PubMed ID: 15600640 [TBL] [Abstract][Full Text] [Related]
5. Critical exponents in two dimensions and pseudo-ε expansion. Nikitina MA; Sokolov AI Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042146. PubMed ID: 24827231 [TBL] [Abstract][Full Text] [Related]
6. Crossover exponent in O(N) phi(4) theory at O(1/N(2)). Gracey JA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):027102. PubMed ID: 12241318 [TBL] [Abstract][Full Text] [Related]
7. Polymers in long-range-correlated disorder. Blavats'ka V; von Ferber C; Holovatch Y Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041102. PubMed ID: 11690005 [TBL] [Abstract][Full Text] [Related]
8. Tendency toward crossover of the effective susceptibility exponent from its doubled Ising value to its doubled mean-field value near a double critical point. Pradeep UK J Chem Phys; 2008 Oct; 129(13):134506. PubMed ID: 19045104 [TBL] [Abstract][Full Text] [Related]
9. Restoration of dimensional reduction in the random-field Ising model at five dimensions. Fytas NG; Martín-Mayor V; Picco M; Sourlas N Phys Rev E; 2017 Apr; 95(4-1):042117. PubMed ID: 28505873 [TBL] [Abstract][Full Text] [Related]
11. Critical exponents of the random-field O(N) model. Feldman DE Phys Rev Lett; 2002 Apr; 88(17):177202. PubMed ID: 12005781 [TBL] [Abstract][Full Text] [Related]
12. Absorbing state phase transitions with quenched disorder. Hooyberghs J; Iglói F; Vanderzande C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066140. PubMed ID: 15244700 [TBL] [Abstract][Full Text] [Related]
13. Self-similar variational perturbation theory for critical exponents. Kleinert H; Yukalov VI Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026131. PubMed ID: 15783402 [TBL] [Abstract][Full Text] [Related]
14. Finite-size scaling in Ising-like systems with quenched random fields: evidence of hyperscaling violation. Vink RL; Fischer T; Binder K Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051134. PubMed ID: 21230464 [TBL] [Abstract][Full Text] [Related]
15. Infinite-randomness critical point in the two-dimensional disordered contact process. Vojta T; Farquhar A; Mast J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005 [TBL] [Abstract][Full Text] [Related]
16. Fractal dimension of critical curves in the O(n)-symmetric ϕ^{4} model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models. Kompaniets M; Wiese KJ Phys Rev E; 2020 Jan; 101(1-1):012104. PubMed ID: 32069567 [TBL] [Abstract][Full Text] [Related]
17. Mean crossover functions for uniaxial three-dimensional Ising-like systems. Garrabos Y; Bervillier C Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021113. PubMed ID: 17025399 [TBL] [Abstract][Full Text] [Related]
18. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
19. Crossover in growth law and violation of superuniversality in the random-field Ising model. Corberi F; Lippiello E; Mukherjee A; Puri S; Zannetti M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021141. PubMed ID: 22463186 [TBL] [Abstract][Full Text] [Related]
20. Random-field and random-anisotropy O(N) spin systems with a free surface. Fedorenko AA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021131. PubMed ID: 23005746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]