These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 14754359)

  • 1. Validity of numerical trajectories in the synchronization transition of complex systems.
    Viana RL; Grebogi C; Pinto SE; Lopes SR; Batista AM; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):067204. PubMed ID: 14754359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016213. PubMed ID: 14995699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal and nonuniversal features in shadowing dynamics of nonhyperbolic chaotic systems with unstable-dimension variability.
    Do Y; Lai YC; Liu Z; Kostelich EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035202. PubMed ID: 12689122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds.
    Brown R; Rulkov NF
    Chaos; 1997 Sep; 7(3):395-413. PubMed ID: 12779668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-state on-off intermittency caused by unstable dimension variability in periodically forced drift waves.
    Galuzio PP; Lopes SR; Viana RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056211. PubMed ID: 22181488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic bursting at the onset of unstable dimension variability.
    Viana RL; Pinto SE; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046213. PubMed ID: 12443305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
    Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unstable dimension variability and synchronization of chaotic systems.
    Viana RL; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):462-8. PubMed ID: 11088481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unstable dimension variability in coupled chaotic systems.
    Lai YC; Lerner D; Williams K; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5445-54. PubMed ID: 11970417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittency transition to generalized synchronization in coupled time-delay systems.
    Senthilkumar DV; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066210. PubMed ID: 18233907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast high-quality numerical shadowing of chaotic maps using synchronization.
    Dutta M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056214. PubMed ID: 16383734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for the partial synchronization in three coupled chaotic systems.
    Lim W; Kim SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036221. PubMed ID: 15903560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-state on-off intermittency and the onset of turbulence in a spatiotemporally chaotic system.
    Galuzio PP; Lopes SR; Viana RL
    Phys Rev Lett; 2010 Jul; 105(5):055001. PubMed ID: 20867925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems.
    Senthilkumar DV; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016211. PubMed ID: 15697702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition from intermittency to periodicity in lag synchronization in coupled Rössler oscillators.
    Zhan M; Wei GW; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036202. PubMed ID: 11909207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Onset of synchronization in systems of globally coupled chaotic maps.
    Baek SJ; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066210. PubMed ID: 15244711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blowout bifurcation and stability of marginal synchronization of chaos.
    Krawiecki A; Matyjaśkiewicz S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036216. PubMed ID: 11580431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization and intermittency in three-coupled chaotic oscillators.
    Tsukamoto N; Miyazaki S; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016212. PubMed ID: 12636590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.