These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 14754914)

  • 1. The unusual vascular structure of the corm of Eriophorum vaginatum: implications for efficient retranslocation of nutrients.
    Cholewa E; Griffith M
    J Exp Bot; 2004 Mar; 55(397):731-41. PubMed ID: 14754914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray microCT imaging technique reveals corm microstructures of an arctic-boreal cotton-sedge, Eriophorum vaginatum.
    Bogart SJ; Spiers G; Cholewa E
    J Struct Biol; 2010 Sep; 171(3):361-71. PubMed ID: 20541609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of sequential leaf development for nutrient balance of the cotton sedge,Eriophorum vaginatum L.
    Jonasson S; Stuart Chapin F
    Oecologia; 1985 Dec; 67(4):511-518. PubMed ID: 28311036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic.
    Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J
    Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal patterns of CO2 and H2O exchange of the Arctic sedges Eriophorum angustifolium and E. vaginatum (Cyperaceae).
    Gebauer R; Reynolds J; Tenhunen J
    Am J Bot; 1998 Apr; 85(4):592. PubMed ID: 21684941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinal variation in stomatal characteristics of an Arctic sedge, Eriophorum vaginatum (Cyperaceae).
    Peterson CA; Fetcher N; McGraw JB; Bennington CC
    Am J Bot; 2012 Sep; 99(9):1562-71. PubMed ID: 22922398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska.
    McGraw JB; Turner JB; Souther S; Bennington CC; Vavrek MC; Shaver GR; Fetcher N
    Glob Chang Biol; 2015 Oct; 21(10):3827-35. PubMed ID: 26033529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and transport of calcium in plants.
    Yang HQ; Jie YL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Jun; 31(3):227-34. PubMed ID: 15961895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecophysiological analysis of two arctic sedges under reduced root temperatures.
    Starr G; Neuman DS; Oberbauer SF
    Physiol Plant; 2004 Mar; 120(3):458-464. PubMed ID: 15032843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event.
    Mohl JE; Fetcher N; Stunz E; Tang J; Moody ML
    Sci Rep; 2020 Jun; 10(1):8990. PubMed ID: 32488082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulvinus functional traits in relation to leaf movements: a light and transmission electron microscopy study of the vascular system.
    Rodrigues TM; Machado SR
    Micron; 2008; 39(1):7-16. PubMed ID: 17950612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal control over allocation to reproduction in a tussock-forming and a rhizomatous species of Eriophorum in central Alaska.
    Mark AF; Chapin FS
    Oecologia; 1989 Jan; 78(1):27-34. PubMed ID: 28311898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of simulated grazing on foliage and root production and biomass allocation in an arctic tundra sedge (Eriophorum vaginatum).
    Archer S; Tieszen LL
    Oecologia; 1983 Apr; 58(1):92-102. PubMed ID: 28310652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal uptake and allocation of phosphorus in Eriophorum vaginatum L measured by labelling with
    Jonasson S; Stuart Chapin F
    New Phytol; 1991 Jun; 118(2):349-357. PubMed ID: 33874176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory flexibility and efficiency are affected by simulated global change in Arctic plants.
    Kornfeld A; Heskel M; Atkin OK; Gough L; Griffin KL; Horton TW; Turnbull MH
    New Phytol; 2013 Mar; 197(4):1161-1172. PubMed ID: 23278298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape Genomics Provides Evidence of Ecotypic Adaptation and a Barrier to Gene Flow at Treeline for the Arctic Foundation Species
    Stunz E; Fetcher N; Lavretsky P; Mohl JE; Tang J; Moody ML
    Front Plant Sci; 2022; 13():860439. PubMed ID: 35401613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth responses of the common arctic graminoid Eriophorum vaginatum to simulated grazing are independent of soil nitrogen availability.
    Grogan P; Zamin TJ
    Oecologia; 2018 Jan; 186(1):151-162. PubMed ID: 29098420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrusive trichome bases in the leaves of silverleaf nightshade (Solanum elaeagnifolium; Solanaceae) do not facilitate fluorescent tracer uptake.
    Burrows GE; White RG; Harper JD; Heady RD; Stanton RA; Zhu X; Wu H; Lemerle D
    Am J Bot; 2013 Dec; 100(12):2307-17. PubMed ID: 24322894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transport dependence of leaf evolution in dicots].
    Gamaleĭ IuV
    Zh Obshch Biol; 2004; 65(5):389-408. PubMed ID: 15559570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf emergences in Microlepis oleaefolia (DC.) Triana (Melastomataceae) and their probable function: an anatomical and ultrastructural study.
    Milanez CR; Machado SR
    Micron; 2008 Oct; 39(7):884-90. PubMed ID: 18187331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.