These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 14755099)

  • 1. The use of plants for remediation of metal-contaminated soils.
    Vassilev A; Schwitzguebel JP; Thewys T; Van Der Lelie D; Vangronsveld J
    ScientificWorldJournal; 2004 Jan; 4():9-34. PubMed ID: 14755099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of contaminated soils and groundwater: lessons from the field.
    Vangronsveld J; Herzig R; Weyens N; Boulet J; Adriaensen K; Ruttens A; Thewys T; Vassilev A; Meers E; Nehnevajova E; van der Lelie D; Mench M
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):765-94. PubMed ID: 19557448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.
    Salt DE; Blaylock M; Kumar NP; Dushenkov V; Ensley BD; Chet I; Raskin I
    Biotechnology (N Y); 1995 May; 13(5):468-74. PubMed ID: 9634787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.
    Rajkumar M; Ae N; Prasad MN; Freitas H
    Trends Biotechnol; 2010 Mar; 28(3):142-9. PubMed ID: 20044160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Roles of rhizosphere in remediation of contaminated soils and its mechanisms].
    Wei S; Zhou Q; Zhang K; Liang J
    Ying Yong Sheng Tai Xue Bao; 2003 Jan; 14(1):143-7. PubMed ID: 12722459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agro-improving method of phytoextracting heavy metal contaminated soil.
    Wei S; Teixeira da Silva JA; Zhou Q
    J Hazard Mater; 2008 Feb; 150(3):662-8. PubMed ID: 17582683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation and its models for organic contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2003 May; 15(3):302-10. PubMed ID: 12938977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation: a technology using green plants to remove contaminants from polluted areas.
    Garbisu C; Hernández-Allica J; Barrutia O; Alkorta I; Becerril JM
    Rev Environ Health; 2002; 17(3):173-88. PubMed ID: 12462482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.
    Rajkumar M; Ae N; Freitas H
    Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.
    Ruttens A; Boulet J; Weyens N; Smeets K; Adriaensen K; Meers E; Van Slycken S; Tack F; Meiresonne L; Thewys T; Witters N; Carleer R; Dupae J; Vangronsveld J
    Int J Phytoremediation; 2011; 13 Suppl 1():194-207. PubMed ID: 22046760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation: an overview of metallic ion decontamination from soil.
    Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives.
    Sarwar N; Imran M; Shaheen MR; Ishaque W; Kamran MA; Matloob A; Rehim A; Hussain S
    Chemosphere; 2017 Mar; 171():710-721. PubMed ID: 28061428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals.
    Meers E; Tack FM; Van Slycken S; Ruttens A; Du Laing G; Vangronsveld J; Verloo MG
    Int J Phytoremediation; 2008; 10(5):390-414. PubMed ID: 19260222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium stabilization with nursery stocks through transplantation: a new approach to phytoremediation.
    Guo B; Liang Y; Fu Q; Ding N; Liu C; Lin Y; Li H; Li N
    J Hazard Mater; 2012 Jan; 199-200():233-9. PubMed ID: 22138169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.
    Fasani E; Manara A; Martini F; Furini A; DalCorso G
    Plant Cell Environ; 2018 May; 41(5):1201-1232. PubMed ID: 28386947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.