These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [The biologic functional surfaces and their applications in tissue engineering]. Yao F; Chen M; Zhang H; Zhang H; An X; Yao K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1177-9, 1199. PubMed ID: 18027721 [TBL] [Abstract][Full Text] [Related]
4. Recombinant human collagens as scaffold materials for chondrocyte cultures. Tiitu V; Pulkkinen HJ; Valonen P; Kiviranta O; Kiekara T; Kiviranta I; Lammi MJ Biomed Mater Eng; 2008; 18(4-5):225-9. PubMed ID: 19065026 [No Abstract] [Full Text] [Related]
5. Carbon nanotubes in scaffolds for tissue engineering. Edwards SL; Werkmeister JA; Ramshaw JA Expert Rev Med Devices; 2009 Sep; 6(5):499-505. PubMed ID: 19751122 [TBL] [Abstract][Full Text] [Related]
6. Seasonal fantasies in scaffolds. Williams D Med Device Technol; 2004; 15(1):8-10. PubMed ID: 14994631 [TBL] [Abstract][Full Text] [Related]
7. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Han D; Gouma PI Nanomedicine; 2006 Mar; 2(1):37-41. PubMed ID: 17292114 [TBL] [Abstract][Full Text] [Related]
9. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Beckstead BL; Pan S; Bhrany AD; Bratt-Leal AM; Ratner BD; Giachelli CM Biomaterials; 2005 Nov; 26(31):6217-28. PubMed ID: 15913763 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering. Subramanian A; Lin HY; Vu D; Larsen G Biomed Sci Instrum; 2004; 40():117-22. PubMed ID: 15133945 [TBL] [Abstract][Full Text] [Related]
11. Alginate microcapsules prepared with xyloglucan as a synthetic extracellular matrix for hepatocyte attachment. Seo SJ; Akaike T; Choi YJ; Shirakawa M; Kang IK; Cho CS Biomaterials; 2005 Jun; 26(17):3607-15. PubMed ID: 15621251 [TBL] [Abstract][Full Text] [Related]
12. Optimizing normoxic conditions in liver devices using enhanced gel matrices. Niu M; Clemens MG; Coger RN Biotechnol Bioeng; 2008 Apr; 99(6):1502-12. PubMed ID: 17969150 [TBL] [Abstract][Full Text] [Related]
13. The compaction of gels by cells: a case of collective mechanical activity. Fernandez P; Bausch AR Integr Biol (Camb); 2009 Mar; 1(3):252-9. PubMed ID: 20023736 [TBL] [Abstract][Full Text] [Related]
14. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Baguneid M; Murray D; Salacinski HJ; Fuller B; Hamilton G; Walker M; Seifalian AM Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):151-7. PubMed ID: 15032735 [TBL] [Abstract][Full Text] [Related]
15. An artificial extracellular matrix created by hepatocyte growth factor fused to IgG-Fc. Azuma K; Nagaoka M; Cho CS; Akaike T Biomaterials; 2010 Feb; 31(5):802-9. PubMed ID: 19846215 [TBL] [Abstract][Full Text] [Related]
16. Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering. Prasad Chennazhy K; Krishnan LK Biomaterials; 2005 Oct; 26(28):5658-67. PubMed ID: 15878371 [TBL] [Abstract][Full Text] [Related]
17. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
18. 3D cell culture opens new dimensions in cell-based assays. Justice BA; Badr NA; Felder RA Drug Discov Today; 2009 Jan; 14(1-2):102-7. PubMed ID: 19049902 [TBL] [Abstract][Full Text] [Related]
20. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Schindler M; Ahmed I; Kamal J; Nur-E-Kamal A; Grafe TH; Young Chung H; Meiners S Biomaterials; 2005 Oct; 26(28):5624-31. PubMed ID: 15878367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]