BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14756390)

  • 1. Adaptive learning in arthropods: spider mites learn to distinguish food quality.
    Egas M; Norde DJ; Sabelis MW
    Exp Appl Acarol; 2003; 30(4):233-47. PubMed ID: 14756390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and turnover of 2-tridecanone in Tetranychus urticae and its consequences for resistance of wild and cultivated tomatoes.
    Chatzivasileiadis EA; Boon JJ; Sabelis MW
    Exp Appl Acarol; 1999 Dec; 23(12):1011-21. PubMed ID: 10737735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper.
    Palevsky E; Walzer A; Gal S; Schausberger P
    Exp Appl Acarol; 2008 Jun; 45(1-2):15-27. PubMed ID: 18566897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced response of tomato plants to injury by green and red strains of Tetranychus urticae.
    Takabayashi J; Shimoda T; Dicke M; Ashihara W; Takafuji A
    Exp Appl Acarol; 2000; 24(5-6):377-83. PubMed ID: 11156163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants.
    Venzon M; Janssen A; Sabelis MW
    Exp Appl Acarol; 2001; 25(10-11):785-808. PubMed ID: 12455871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tomato transgenic lines and Tetranychus urticae: changes in plant suitability and susceptibility.
    Castagnoli M; Caccia R; Liguori M; Simoni S; Marinari S; Soressi GP
    Exp Appl Acarol; 2003; 31(3-4):177-89. PubMed ID: 14974685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in plant responses induced by an arthropod influence the colonization behavior of a subsequent herbivore.
    Silva DB; Jiménez A; Urbaneja A; Pérez-Hedo M; Bento JM
    Pest Manag Sci; 2021 Sep; 77(9):4168-4180. PubMed ID: 33938117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Euseiusfinlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): life history and feeding habits on three different types of food.
    Abdalla AA; Zhang Z; Masters GJ; McNeill S
    Exp Appl Acarol; 2001; 25(10-11):833-47. PubMed ID: 12455874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.
    Gols R; Roosjen M; Dijkman H; Dicke M
    J Chem Ecol; 2003 Dec; 29(12):2651-66. PubMed ID: 14969353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herbivory-associated degradation of tomato trichomes and its impact on biological control of Aculops lycopersici.
    van Houten YM; Glas JJ; Hoogerbrugge H; Rothe J; Bolckmans KJ; Simoni S; van Arkel J; Alba JM; Kant MR; Sabelis MW
    Exp Appl Acarol; 2013 Jun; 60(2):127-38. PubMed ID: 23238958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae.
    Ximénez-Embún MG; Castañera P; Ortego F
    J Insect Physiol; 2017 Jan; 96():73-81. PubMed ID: 27789296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues.
    Fernández Ferrari MC; Schausberger P
    Naturwissenschaften; 2013 Jun; 100(6):541-9. PubMed ID: 23644512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.
    Ataide LM; Pappas ML; Schimmel BC; Lopez-Orenes A; Alba JM; Duarte MV; Pallini A; Schuurink RC; Kant MR
    Plant Sci; 2016 Nov; 252():300-310. PubMed ID: 27717467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities.
    Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR
    BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider mites adaptively learn recognizing mycorrhiza-induced changes in host plant volatiles.
    Patiño-Ruiz JD; Schausberger P
    Exp Appl Acarol; 2014 Dec; 64(4):455-63. PubMed ID: 25097072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of an arthropod predator to a challenging environment is associated with a loss of a genome-wide plastic transcriptional response.
    Bajda SA; Wybouw N; Nguyễn VH; De Clercq P; Van Leeuwen T
    Pest Manag Sci; 2024 Apr; 80(4):2021-2031. PubMed ID: 38110295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal heterogeneity of tomato induced defense responses affects spider mite performance and behavior.
    Schimmel BCJ; Ataide LMS; Kant MR
    Plant Signal Behav; 2017 Oct; 12(10):e1370526. PubMed ID: 28857667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato.
    Miresmailli S; Isman MB
    J Econ Entomol; 2006 Dec; 99(6):2015-23. PubMed ID: 17195668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diapause incidence in the two-spotted spider mite increases due to predator presence, not due to selective predation.
    Kroon A; Veenendaal RL; Egas M; Bruin J; Sabelis MW
    Exp Appl Acarol; 2005; 35(1-2):73-81. PubMed ID: 15777002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics.
    Godinho DP; Janssen A; Dias T; Cruz C; Magalhães S
    Oecologia; 2016 Jan; 180(1):161-7. PubMed ID: 26369779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.