These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 14756392)
1. Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Gnanvossou D; Yaninek JS; Hanna R; Dicke M Exp Appl Acarol; 2003; 30(4):265-78. PubMed ID: 14756392 [TBL] [Abstract][Full Text] [Related]
2. Prey-related odor preference of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo (Acari: Phytoseiidae). Gnanvossou D; Hanna R; Dicke M Exp Appl Acarol; 2002; 27(1-2):39-56. PubMed ID: 12593511 [TBL] [Abstract][Full Text] [Related]
3. Interactions in an acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Benin, West Africa. Onzo A; Hanna R; Sabelis MW Exp Appl Acarol; 2003; 31(3-4):225-41. PubMed ID: 14974688 [TBL] [Abstract][Full Text] [Related]
4. Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa. Onzo A; Sabelis MW; Hanna R Exp Appl Acarol; 2014 Mar; 62(3):293-311. PubMed ID: 24114338 [TBL] [Abstract][Full Text] [Related]
5. Infochemical-mediated intraguild interactions among three predatory mites on cassava plants. Gnanvossou D; Hanna R; Dicke M Oecologia; 2003 Mar; 135(1):84-90. PubMed ID: 12647107 [TBL] [Abstract][Full Text] [Related]
7. Cannibalism and interspecific predation in a phytoseiid predator guild from cassava fields in Africa: evidence from the laboratory. Zannou ID; Hanna R; de Moraes GJ; Kreiter S Exp Appl Acarol; 2005; 37(1-2):27-42. PubMed ID: 16180070 [TBL] [Abstract][Full Text] [Related]
8. Plant feeding by a predatory mite inhabiting cassava. Magalhães S; Bakker FM Exp Appl Acarol; 2002; 27(1-2):27-37. PubMed ID: 12593510 [TBL] [Abstract][Full Text] [Related]
9. Living at the threshold: where does the neotropical phytoseiid mite Typhlodromalus aripo survive the dry season? Zundel C; Hanna R; Scheidegger U; Nagel P Exp Appl Acarol; 2007; 41(1-2):11-26. PubMed ID: 17333460 [TBL] [Abstract][Full Text] [Related]
10. Species- and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. Pinto-Zevallos DM; Bezerra RHS; Souza SR; Ambrogi BG Exp Appl Acarol; 2018 Mar; 74(3):261-274. PubMed ID: 29478090 [TBL] [Abstract][Full Text] [Related]
11. Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Magalhães S; Janssen A; Hanna R; Sabelis MW Oecologia; 2002 Jun; 132(1):143-149. PubMed ID: 28547275 [TBL] [Abstract][Full Text] [Related]
12. Effects of ultraviolet radiation on predatory mites and the role of refuges in plant structures. Onzo A; Sabelis MW; Hanna R Environ Entomol; 2010 Apr; 39(2):695-701. PubMed ID: 20388304 [TBL] [Abstract][Full Text] [Related]
13. Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa. Agboton BV; Hanna R; Onzo A; Vidal S; von Tiedemann A Exp Appl Acarol; 2013 Jun; 60(2):205-17. PubMed ID: 23104107 [TBL] [Abstract][Full Text] [Related]
14. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days. Nachappa P; Margolies DC; Nechols JR; Loughin T Exp Appl Acarol; 2006; 40(3-4):231-9. PubMed ID: 17225078 [TBL] [Abstract][Full Text] [Related]
15. Does Long-Term Feeding on Alternative Prey Affect the Biological Performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the Target Spider Mites? Li YY; Zhang GH; Tian CB; Liu MX; Liu YQ; Liu H; Wang JJ J Econ Entomol; 2017 Jun; 110(3):915-923. PubMed ID: 28334233 [TBL] [Abstract][Full Text] [Related]
16. Intraguild interactions among three spider mite predators: predation preference and effects on juvenile development and oviposition. Rahmani H; Daneshmandi A; Walzer A Exp Appl Acarol; 2015 Dec; 67(4):493-505. PubMed ID: 26462926 [TBL] [Abstract][Full Text] [Related]
17. Prey stage preference of Amblyseius paraaerialis (Acari: Phytoseiidae) on varied life stages of the spider mites Tetranychus urticae, Tetranychus macfarlanei and Oligonychus biharensis (Acari: Tetranychidae) and exploring the mass rearing possibilities of this predatory mite on alternative diets. Jyothis D; Ramani N Exp Appl Acarol; 2024 Apr; 92(3):385-401. PubMed ID: 38478140 [TBL] [Abstract][Full Text] [Related]
18. Euseiusfinlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): life history and feeding habits on three different types of food. Abdalla AA; Zhang Z; Masters GJ; McNeill S Exp Appl Acarol; 2001; 25(10-11):833-47. PubMed ID: 12455874 [TBL] [Abstract][Full Text] [Related]
19. Biological performance of the predatory mite Neoseiulus idaeus (Phytoseiidae): a candidate for the control of tetranychid mites in Brazilian soybean crops. Reichert MB; Toldi M; Rode PA; Ferla JJ; Ferla NJ Braz J Biol; 2017; 77(2):361-366. PubMed ID: 27533728 [TBL] [Abstract][Full Text] [Related]
20. Leaf trichome-mediated predator effects on the distribution of herbivorous mites within a kidney bean plant. Yoshida T; Choh Y Exp Appl Acarol; 2024 Jun; 93(1):155-167. PubMed ID: 38600348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]