These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 14756396)
41. Euseiusfinlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): life history and feeding habits on three different types of food. Abdalla AA; Zhang Z; Masters GJ; McNeill S Exp Appl Acarol; 2001; 25(10-11):833-47. PubMed ID: 12455874 [TBL] [Abstract][Full Text] [Related]
42. Effects of deltamethrin, dimethoate, and chlorpyrifos on survival and reproduction of the collembolan Folsomia candida and the predatory mite Hypoaspis aculeifer in two African and two European soils. Jaabiri Kamoun I; Jegede OO; Owojori OJ; Bouzid J; Gargouri R; Römbke J Integr Environ Assess Manag; 2018 Jan; 14(1):92-104. PubMed ID: 28755498 [TBL] [Abstract][Full Text] [Related]
43. Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism. Rudolf VH Ecology; 2008 Jun; 89(6):1650-60. PubMed ID: 18589529 [TBL] [Abstract][Full Text] [Related]
44. Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae). Karagoz M; Gulcu B; Cakmak I; Kaya HK; Hazir S Exp Appl Acarol; 2007; 43(2):85-95. PubMed ID: 17924198 [TBL] [Abstract][Full Text] [Related]
45. Prey-specific impact of cold pre-exposure on kill rate and reproduction. Jensen K; Toft S; Sigsgaard L; Sørensen JG; Holmstrup M J Anim Ecol; 2019 Feb; 88(2):258-268. PubMed ID: 30303532 [TBL] [Abstract][Full Text] [Related]
46. Response of coccinellid larvae to conspecific and heterospecific larval tracks: a mechanism that reduces cannibalism and intraguild predation. Meisner MH; Harmon JP; Ives AR Environ Entomol; 2011 Feb; 40(1):103-10. PubMed ID: 22182618 [TBL] [Abstract][Full Text] [Related]
47. Does Long-Term Feeding on Alternative Prey Affect the Biological Performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the Target Spider Mites? Li YY; Zhang GH; Tian CB; Liu MX; Liu YQ; Liu H; Wang JJ J Econ Entomol; 2017 Jun; 110(3):915-923. PubMed ID: 28334233 [TBL] [Abstract][Full Text] [Related]
48. Juvenile prey induce antipredator behaviour in adult predators. de Almeida ÂA; Janssen A Exp Appl Acarol; 2013 Mar; 59(3):275-82. PubMed ID: 22923143 [TBL] [Abstract][Full Text] [Related]
49. Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues. Gyuris E; Szép E; Kontschán J; Hettyey A; Tóth Z Behav Processes; 2017 Nov; 144():100-106. PubMed ID: 28882653 [TBL] [Abstract][Full Text] [Related]
50. Numerical responses of the predatory mites, Cheyletus eruditus (Trombidiformes: Cheyletidae) and Cheyletus malaccensis, to Liposcelis decolor (Psocodea: Liposcelididae). Danso JK; Opit GP; Giles KL; Noden BH J Econ Entomol; 2023 Aug; 116(4):1447-1457. PubMed ID: 37348954 [TBL] [Abstract][Full Text] [Related]
51. Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Barbosa MF; de Moraes GJ Exp Appl Acarol; 2016 Jul; 69(3):289-96. PubMed ID: 27115501 [TBL] [Abstract][Full Text] [Related]
52. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae. Lesna I; Wolfs P; Faraji F; Roy L; Komdeur J; Sabelis MW Exp Appl Acarol; 2009 Jun; 48(1-2):63-80. PubMed ID: 19184469 [TBL] [Abstract][Full Text] [Related]
53. Emergent impacts of cannibalism and size refuges in prey on intraguild predation systems. Rudolf VH; Armstrong J Oecologia; 2008 Oct; 157(4):675-86. PubMed ID: 18690480 [TBL] [Abstract][Full Text] [Related]
54. Oviposition behavior of the mirid Macrolophus pygmaeus under risk of intraguild predation and cannibalism. Dumont F; Lucas É; Alomar O Insect Sci; 2021 Feb; 28(1):224-230. PubMed ID: 31916362 [TBL] [Abstract][Full Text] [Related]
55. Risk assessment of non-target effects caused by releasing two exotic phytoseiid mites in Japan: can an indigenous phytoseiid mite become IG prey? Sato Y; Mochizuki A Exp Appl Acarol; 2011 Aug; 54(4):319-29. PubMed ID: 21465332 [TBL] [Abstract][Full Text] [Related]
56. Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Buitenhuis R; Shipp L; Scott-Dupree C Bull Entomol Res; 2010 Apr; 100(2):167-73. PubMed ID: 19419591 [TBL] [Abstract][Full Text] [Related]
57. Cannibalism and carnivory in Toxorhynchites splendens (Diptera: Culicidae). Amalraj DD; Das PK Southeast Asian J Trop Med Public Health; 1992 Sep; 23(3):450-2. PubMed ID: 1362626 [TBL] [Abstract][Full Text] [Related]
58. Development and reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) with fungus gnat larvae (Diptera: Sciaridae), potworms (Oligochaeta: Enchytraeidae) or Sancassania aff. sphaerogaster (Acari: Acaridae) as the sole food source. Cabrera AR; Cloyd RA; Zaborski ER Exp Appl Acarol; 2005; 36(1-2):71-81. PubMed ID: 16082925 [TBL] [Abstract][Full Text] [Related]
59. Effects of contrasting diets and temperatures on reproduction and prey consumption by Proprioseiopsis asetus (Acari: Phytoseiidae). Emmert CJ; Mizell RF; Andersen PC; Frank JH; Stimac JL Exp Appl Acarol; 2008 Jan; 44(1):11-26. PubMed ID: 18247141 [TBL] [Abstract][Full Text] [Related]
60. Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Szafranek P; Lewandowski M; Kozak M Exp Appl Acarol; 2013 Sep; 61(1):53-67. PubMed ID: 23640712 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]