BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 14756550)

  • 1. Hydrophobic core fluidity of homologous protein domains: relation of side-chain dynamics to core composition and packing.
    Best RB; Rutherford TJ; Freund SM; Clarke J
    Biochemistry; 2004 Feb; 43(5):1145-55. PubMed ID: 14756550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two proteins with the same structure respond very differently to mutation: the role of plasticity in protein stability.
    Cota E; Hamill SJ; Fowler SB; Clarke J
    J Mol Biol; 2000 Sep; 302(3):713-25. PubMed ID: 10986129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin.
    Carr PA; Erickson HP; Palmer AG
    Structure; 1997 Jul; 5(7):949-59. PubMed ID: 9261088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What contributions to protein side-chain dynamics are probed by NMR experiments? A molecular dynamics simulation analysis.
    Best RB; Clarke J; Karplus M
    J Mol Biol; 2005 May; 349(1):185-203. PubMed ID: 15876377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold.
    Cota E; Steward A; Fowler SB; Clarke J
    J Mol Biol; 2001 Feb; 305(5):1185-94. PubMed ID: 11162123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk between the protein surface and hydrophobic core in a core-swapped fibronectin type III domain.
    Billings KS; Best RB; Rutherford TJ; Clarke J
    J Mol Biol; 2008 Jan; 375(2):560-71. PubMed ID: 18035373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation.
    Ng SP; Rounsevell RW; Steward A; Geierhaas CD; Williams PM; Paci E; Clarke J
    J Mol Biol; 2005 Jul; 350(4):776-89. PubMed ID: 15964016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barstar has a highly dynamic hydrophobic core: evidence from molecular dynamics simulations and nuclear magnetic resonance relaxation data.
    Wong KB; Daggett V
    Biochemistry; 1998 Aug; 37(32):11182-92. PubMed ID: 9698364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing residual structure and backbone dynamics on the milli- to picosecond timescale in a urea-denatured fibronectin type III domain.
    Meekhof AE; Freund SM
    J Mol Biol; 1999 Feb; 286(2):579-92. PubMed ID: 9973572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of beta-sandwich proteins: three-state transition of a fibronectin type III module.
    Cota E; Clarke J
    Protein Sci; 2000 Jan; 9(1):112-20. PubMed ID: 10739253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level.
    Peng Q; Fang J; Wang M; Li H
    J Mol Biol; 2011 Sep; 412(4):698-709. PubMed ID: 21839747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the transition states for folding of two Ig-like proteins from different superfamilies.
    Geierhaas CD; Paci E; Vendruscolo M; Clarke J
    J Mol Biol; 2004 Oct; 343(4):1111-23. PubMed ID: 15476825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical design of the third FnIII domain of tenascin-C.
    Peng Q; Zhuang S; Wang M; Cao Y; Khor Y; Li H
    J Mol Biol; 2009 Mar; 386(5):1327-42. PubMed ID: 19452631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of boundary selection on the stability and folding of the third fibronectin type III domain from human tenascin.
    Hamill SJ; Meekhof AE; Clarke J
    Biochemistry; 1998 Jun; 37(22):8071-9. PubMed ID: 9609701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR dynamics distinguish between hard and soft hydrophobic cores in the DNA-binding domain of PhoB and demonstrate different roles of the cores in binding to DNA.
    Okamura H; Makino K; Nishimura Y
    J Mol Biol; 2007 Apr; 367(4):1093-117. PubMed ID: 17313959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing.
    Anil B; Sato S; Cho JH; Raleigh DP
    J Mol Biol; 2005 Dec; 354(3):693-705. PubMed ID: 16246369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of bulkiness and hydrophobicity of an aliphatic amino acid in the recognition helix of the GAGA zinc finger on the stability of the hydrophobic core and DNA binding affinity.
    Dhanasekaran M; Negi S; Imanishi M; Suzuki M; Sugiura Y
    Biochemistry; 2008 Nov; 47(45):11717-24. PubMed ID: 18855425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology.
    Hamill SJ; Steward A; Clarke J
    J Mol Biol; 2000 Mar; 297(1):165-78. PubMed ID: 10704314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and dynamic studies on ligand-free adenylate kinase from Mycobacterium tuberculosis revealed a closed conformation that can be related to the reduced catalytic activity.
    Miron S; Munier-Lehmann H; Craescu CT
    Biochemistry; 2004 Jan; 43(1):67-77. PubMed ID: 14705932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study of delta131delta.
    Choy WY; Shortle D; Kay LE
    J Am Chem Soc; 2003 Feb; 125(7):1748-58. PubMed ID: 12580600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.