BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 14756556)

  • 21. Mono(ADP-ribosyl)ation of 2'-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly.
    Takamura-Enya T; Watanabe M; Totsuka Y; Kanazawa T; Matsushima-Hibiya Y; Koyama K; Sugimura T; Wakabayashi K
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12414-9. PubMed ID: 11592983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human alpha-defensins neutralize toxins of the mono-ADP-ribosyltransferase family.
    Kim C; Slavinskaya Z; Merrill AR; Kaufmann SH
    Biochem J; 2006 Oct; 399(2):225-9. PubMed ID: 16817779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-activity relationships in diphtheria toxin and exotoxin A from Pseudomonas aeruginosa.
    Collier RJ; Gilliland DG; Lory S
    Prog Clin Biol Res; 1979; 31():751-9. PubMed ID: 119972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases.
    Lewandowicz A; Schramm VL
    Biochemistry; 2004 Feb; 43(6):1458-68. PubMed ID: 14769022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition State Structure for the Hydrolysis of NAD Catalyzed by Diphtheria Toxin.
    Berti PJ; Blanke SR; Schramm VL
    J Am Chem Soc; 1997 Dec; 119(50):12079-12088. PubMed ID: 19079637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae.
    Kimata Y; Harashima S; Kohno K
    Biochem Biophys Res Commun; 1993 Mar; 191(3):1145-51. PubMed ID: 8466491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the endogenous ADP-ribosylation of wild-type and mutant elongation factor 2 in eukaryotic cells.
    Fendrick JL; Iglewski WJ; Moehring JM; Moehring TJ
    Eur J Biochem; 1992 Apr; 205(1):25-31. PubMed ID: 1313365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition state structure of E. coli tRNA-specific adenosine deaminase.
    Luo M; Schramm VL
    J Am Chem Soc; 2008 Feb; 130(8):2649-55. PubMed ID: 18251477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transition state analysis of acid-catalyzed dAMP hydrolysis.
    McCann JA; Berti PJ
    J Am Chem Soc; 2007 Jun; 129(22):7055-64. PubMed ID: 17497857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.
    Avila EE; Rodriguez OI; Marquez JA; Berghuis AM
    Mol Biochem Parasitol; 2016 Jun; 207(2):68-74. PubMed ID: 27234208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Actin--an inhibitor of eukaryotic elongation factor activities.
    Bektaş M; Günçer B; Güven C; Nurten R; Bermek E
    Biochem Biophys Res Commun; 2004 May; 317(4):1061-6. PubMed ID: 15094376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast as a tool for characterizing mono-ADP-ribosyltransferase toxins.
    Turgeon Z; White D; Jørgensen R; Visschedyk D; Fieldhouse RJ; Mangroo D; Merrill AR
    FEMS Microbiol Lett; 2009 Nov; 300(1):97-106. PubMed ID: 19793133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiae.
    Jørgensen R; Yates SP; Teal DJ; Nilsson J; Prentice GA; Merrill AR; Andersen GR
    J Biol Chem; 2004 Oct; 279(44):45919-25. PubMed ID: 15316019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism.
    Wilson BA; Collier RJ
    Curr Top Microbiol Immunol; 1992; 175():27-41. PubMed ID: 1628498
    [No Abstract]   [Full Text] [Related]  

  • 37. Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches.
    Cen Y; Sauve AA
    J Am Chem Soc; 2010 Sep; 132(35):12286-98. PubMed ID: 20718419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the diphthamide-containing loop within eukaryotic elongation factor 2 in ADP-ribosylation by Pseudomonas aeruginosa exotoxin A.
    Zhang Y; Liu S; Lajoie G; Merrill AR
    Biochem J; 2008 Jul; 413(1):163-74. PubMed ID: 18373493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.
    Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E
    FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new insight into using chlorine leaving group and nucleophile carbon kinetic isotope effects to determine substituent effects on the structure of SN2 transition states.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2007 Aug; 111(33):8110-20. PubMed ID: 17663535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.