These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 14756570)

  • 21. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions.
    Ladokhin AS; White SH
    J Mol Biol; 2001 Jun; 309(3):543-52. PubMed ID: 11397078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational and structural-based analyses of the osmolyte effect on protein stability.
    Takano K; Saito M; Morikawa M; Kanaya S
    J Biochem; 2004 Jun; 135(6):701-8. PubMed ID: 15213245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state.
    Venkatesu P; Lee MJ; Lin HM
    Arch Biochem Biophys; 2007 Oct; 466(1):106-15. PubMed ID: 17697669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Thermochemistry of dissolving glycine, glycyl-glycine, and diglycyl-glycine in a mixed water-dimethylsulfoxide solvent at 298.15 K].
    Smirnov VI; Badelin VG
    Biofizika; 2004; 49(3):395-400. PubMed ID: 15327198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic analysis of osmolyte effect on thermal stability of ribonuclease A in terms of water activity.
    Miyawaki O; Dozen M; Nomura K
    Biophys Chem; 2014 Jan; 185():19-24. PubMed ID: 24292629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Urea-amide preferential interactions in water: quantitative comparison of model compound data with biopolymer results using water accessible surface areas.
    Cannon JG; Anderson CF; Record MT
    J Phys Chem B; 2007 Aug; 111(32):9675-85. PubMed ID: 17658791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying additive interactions of the osmolyte proline with individual functional groups of proteins: comparisons with urea and glycine betaine, interpretation of m-values.
    Diehl RC; Guinn EJ; Capp MW; Tsodikov OV; Record MT
    Biochemistry; 2013 Sep; 52(35):5997-6010. PubMed ID: 23909383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The sarcosine effect on protein stability: a case of nonadditivity?
    Ibarra-Molero B; Plaza del Pino IM; Souhail B; Hammou HO; Sanchez-Ruiz JM
    Protein Sci; 2000 Apr; 9(4):820-6. PubMed ID: 10794425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased thermal stability of proteins in the presence of naturally occurring osmolytes.
    Santoro MM; Liu Y; Khan SM; Hou LX; Bolen DW
    Biochemistry; 1992 Jun; 31(23):5278-83. PubMed ID: 1376620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osmolyte-driven contraction of a random coil protein.
    Qu Y; Bolen CL; Bolen DW
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9268-73. PubMed ID: 9689069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of urea and guanidine hydrochloride on peptide and nonpolar groups.
    Nandi PK; Robinson DR
    Biochemistry; 1984 Dec; 23(26):6661-8. PubMed ID: 6529576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds.
    Roseman MA
    J Mol Biol; 1988 Apr; 200(3):513-22. PubMed ID: 3398047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein.
    Lin TY; Timasheff SN
    Biochemistry; 1994 Oct; 33(42):12695-701. PubMed ID: 7918496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Singular efficacy of trimethylamine N-oxide to counter protein destabilization in ice.
    Strambini GB; Gonnelli M
    Biochemistry; 2008 Mar; 47(11):3322-31. PubMed ID: 18293933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen bonding progressively strengthens upon transfer of the protein urea-denatured state to water and protecting osmolytes.
    Holthauzen LM; Rösgen J; Bolen DW
    Biochemistry; 2010 Feb; 49(6):1310-8. PubMed ID: 20073511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compatibility of osmolytes with Gibbs energy of stabilization of proteins.
    Anjum F; Rishi V; Ahmad F
    Biochim Biophys Acta; 2000 Jan; 1476(1):75-84. PubMed ID: 10606769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An effective solvent theory connecting the underlying mechanisms of osmolytes and denaturants for protein stability.
    Linhananta A; Hadizadeh S; Plotkin SS
    Biophys J; 2011 Jan; 100(2):459-68. PubMed ID: 21244842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide conformational preferences in osmolyte solutions: transfer free energies of decaalanine.
    Kokubo H; Hu CY; Pettitt BM
    J Am Chem Soc; 2011 Feb; 133(6):1849-58. PubMed ID: 21250690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.