These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 14756763)
1. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Zhang P; Tan HT; Pwee KH; Kumar PP Plant J; 2004 Feb; 37(4):566-77. PubMed ID: 14756763 [TBL] [Abstract][Full Text] [Related]
2. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783 [TBL] [Abstract][Full Text] [Related]
3. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Winter KU; Saedler H; Theissen G Plant J; 2002 Aug; 31(4):457-75. PubMed ID: 12182704 [TBL] [Abstract][Full Text] [Related]
4. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Chang YY; Chiu YF; Wu JW; Yang CH Plant Cell Physiol; 2009 Aug; 50(8):1425-38. PubMed ID: 19541596 [TBL] [Abstract][Full Text] [Related]
5. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Hsu HF; Hsieh WP; Chen MK; Chang YY; Yang CH Plant Cell Physiol; 2010 Jun; 51(6):1029-45. PubMed ID: 20395287 [TBL] [Abstract][Full Text] [Related]
6. MADS-Box gene diversity in seed plants 300 million years ago. Becker A; Winter KU; Meyer B; Saedler H; Theissen G Mol Biol Evol; 2000 Oct; 17(10):1425-34. PubMed ID: 11018150 [TBL] [Abstract][Full Text] [Related]
7. Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. Fourquin C; Ferrándiz C Plant J; 2012 Sep; 71(6):990-1001. PubMed ID: 22563981 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. Nakatsuka T; Saito M; Yamada E; Fujita K; Yamagishi N; Yoshikawa N; Nishihara M BMC Plant Biol; 2015 Jul; 15():182. PubMed ID: 26183329 [TBL] [Abstract][Full Text] [Related]
9. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in opium poppy. Hands P; Vosnakis N; Betts D; Irish VF; Drea S Ann Bot; 2011 Jun; 107(9):1557-66. PubMed ID: 21385783 [TBL] [Abstract][Full Text] [Related]
10. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms. Shen G; Yang CH; Shen CY; Huang KS Biol Res; 2019 Apr; 52(1):25. PubMed ID: 31018872 [TBL] [Abstract][Full Text] [Related]
11. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Liu Z; Zhang D; Liu D; Li F; Lu H Plant Cell Rep; 2013 Feb; 32(2):227-37. PubMed ID: 23096754 [TBL] [Abstract][Full Text] [Related]
12. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Kramer EM; Jaramillo MA; Di Stilio VS Genetics; 2004 Feb; 166(2):1011-23. PubMed ID: 15020484 [TBL] [Abstract][Full Text] [Related]
13. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333 [TBL] [Abstract][Full Text] [Related]
14. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Rutledge R; Regan S; Nicolas O; Fobert P; Côté C; Bosnich W; Kauffeldt C; Sunohara G; Séguin A; Stewart D Plant J; 1998 Sep; 15(5):625-34. PubMed ID: 9778845 [TBL] [Abstract][Full Text] [Related]
15. Conserved intragenic elements were critical for the evolution of the floral C-function. Causier B; Bradley D; Cook H; Davies B Plant J; 2009 Apr; 58(1):41-52. PubMed ID: 19054363 [TBL] [Abstract][Full Text] [Related]
16. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Tzeng TY; Chen HY; Yang CH Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066 [TBL] [Abstract][Full Text] [Related]
17. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Müller BM; Saedler H; Zachgo S Plant J; 2001 Oct; 28(2):169-79. PubMed ID: 11722760 [TBL] [Abstract][Full Text] [Related]
18. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488 [TBL] [Abstract][Full Text] [Related]
19. An Evolutionary Framework for Carpel Developmental Control Genes. Pfannebecker KC; Lange M; Rupp O; Becker A Mol Biol Evol; 2017 Feb; 34(2):330-348. PubMed ID: 28049761 [TBL] [Abstract][Full Text] [Related]
20. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. Dreni L; Pilatone A; Yun D; Erreni S; Pajoro A; Caporali E; Zhang D; Kater MM Plant Cell; 2011 Aug; 23(8):2850-63. PubMed ID: 21810995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]