BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 14756796)

  • 1. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1.
    Maamar H; Valette O; Fierobe HP; Bélaich A; Bélaich JP; Tardif C
    Mol Microbiol; 2004 Jan; 51(2):589-98. PubMed ID: 14756796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum.
    Perret S; Maamar H; Bélaich JP; Tardif C
    Mol Microbiol; 2004 Jan; 51(2):599-607. PubMed ID: 14756797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum.
    Maamar H; Abdou L; Boileau C; Valette O; Tardif C
    J Bacteriol; 2006 Apr; 188(7):2614-24. PubMed ID: 16547049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first evidence that a single cellulase can be essential for cellulose degradation in a cellulolytic microorganism.
    Wilson DB
    Mol Microbiol; 2009 Dec; 74(6):1287-8. PubMed ID: 19788547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: identification of seven genes encoding new dockerin-containing proteins.
    Blouzard JC; Bourgeois C; de Philip P; Valette O; Bélaïch A; Tardif C; Bélaïch JP; Pagès S
    J Bacteriol; 2007 Mar; 189(6):2300-9. PubMed ID: 17209020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes.
    Fierobe HP; Mechaly A; Tardif C; Belaich A; Lamed R; Shoham Y; Belaich JP; Bayer EA
    J Biol Chem; 2001 Jun; 276(24):21257-61. PubMed ID: 11290750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome.
    Pagès S; Belaich A; Tardif C; Reverbel-Leroy C; Gaudin C; Belaich JP
    J Bacteriol; 1996 Apr; 178(8):2279-86. PubMed ID: 8636029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation.
    Béguin P; Lemaire M
    Crit Rev Biochem Mol Biol; 1996 Jun; 31(3):201-36. PubMed ID: 8817076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp.
    Pagès S; Bélaïch A; Fierobe HP; Tardif C; Gaudin C; Bélaïch JP
    J Bacteriol; 1999 Mar; 181(6):1801-10. PubMed ID: 10074072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain.
    Pagès S; Bélaïch A; Bélaïch JP; Morag E; Lamed R; Shoham Y; Bayer EA
    Proteins; 1997 Dec; 29(4):517-27. PubMed ID: 9408948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulosomes-structure and ultrastructure.
    Bayer EA; Shimon LJ; Shoham Y; Lamed R
    J Struct Biol; 1998 Dec; 124(2-3):221-34. PubMed ID: 10049808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition.
    Spinelli S; Fiérobe HP; Belaïch A; Belaïch JP; Henrissat B; Cambillau C
    J Mol Biol; 2000 Nov; 304(2):189-200. PubMed ID: 11080455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose?
    Ferdinand PH; Borne R; Trotter V; Pagès S; Tardif C; Fierobe HP; Perret S
    PLoS One; 2013; 8(7):e69360. PubMed ID: 23935995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular study and overexpression of the Clostridium cellulolyticum celF cellulase gene in Escherichia coli.
    Reverbel-Leroy C; Belaich A; Bernadac A; Gaudin C; Belaich JP; Tardif C
    Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():1013-1023. PubMed ID: 8936327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824.
    Perret S; Casalot L; Fierobe HP; Tardif C; Sabathe F; Belaich JP; Belaich A
    J Bacteriol; 2004 Jan; 186(1):253-7. PubMed ID: 14679247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum.
    Xu T; Li Y; He Z; Zhou J
    Mol Microbiol; 2014 Feb; 91(4):694-705. PubMed ID: 24330350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulosome from Clostridium cellulolyticum: molecular study of the Dockerin/Cohesin interaction.
    Fierobe HP; Pagès S; Bélaïch A; Champ S; Lexa D; Bélaïch JP
    Biochemistry; 1999 Sep; 38(39):12822-32. PubMed ID: 10504252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element.
    Abdou L; Boileau C; de Philip P; Pagès S; Fiérobe HP; Tardif C
    J Bacteriol; 2008 Mar; 190(5):1499-506. PubMed ID: 18156277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cloned cel (cellulose degradation) genes of Clostridium thermocellum and their products.
    Béguin P; Millet J; Aubert JP
    Microbiol Sci; 1987 Sep; 4(9):277-80. PubMed ID: 3153620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.