BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 14757059)

  • 21. Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase.
    Adams JA; McGlone ML; Gibson R; Taylor SS
    Biochemistry; 1995 Feb; 34(8):2447-54. PubMed ID: 7873523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA.
    Kim C; Xuong NH; Taylor SS
    Science; 2005 Feb; 307(5710):690-6. PubMed ID: 15692043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication.
    Smith CM; Radzio-Andzelm E; Madhusudan ; Akamine P; Taylor SS
    Prog Biophys Mol Biol; 1999; 71(3-4):313-41. PubMed ID: 10354702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for the importance of hydrophobic residues in the interactions between the cAMP-dependent protein kinase catalytic subunit and the protein kinase inhibitors.
    Baude EJ; Dignam SS; Reimann EM; Uhler MD
    J Biol Chem; 1994 Jul; 269(27):18128-33. PubMed ID: 8027074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting.
    Cheng X; Shaltiel S; Taylor SS
    Biochemistry; 1998 Oct; 37(40):14005-13. PubMed ID: 9760235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the glycine triad in the ATP-binding site of cAMP-dependent protein kinase.
    Hemmer W; McGlone M; Tsigelny I; Taylor SS
    J Biol Chem; 1997 Jul; 272(27):16946-54. PubMed ID: 9202006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low- and room-temperature X-ray structures of protein kinase A ternary complexes shed new light on its activity.
    Kovalevsky AY; Johnson H; Hanson BL; Waltman MJ; Fisher SZ; Taylor S; Langan P
    Acta Crystallogr D Biol Crystallogr; 2012 Jul; 68(Pt 7):854-60. PubMed ID: 22751671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Examination of an active-site electrostatic node in the cAMP-dependent protein kinase catalytic subunit.
    Grant BD; Tsigelny I; Adams JA; Taylor SS
    Protein Sci; 1996 Jul; 5(7):1316-24. PubMed ID: 8819164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT).
    Gassel M; Breitenlechner CB; Rüger P; Jucknischke U; Schneider T; Huber R; Bossemeyer D; Engh RA
    J Mol Biol; 2003 Jun; 329(5):1021-34. PubMed ID: 12798691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor.
    Ung MU; Lu B; McCammon JA
    Biopolymers; 2006 Apr; 81(6):428-39. PubMed ID: 16365849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the unliganded cAMP-dependent protein kinase catalytic subunit from Saccharomyces cerevisiae.
    Mashhoon N; Carmel G; Pflugrath JW; Kuret J
    Arch Biochem Biophys; 2001 Mar; 387(1):11-9. PubMed ID: 11368172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase.
    Grant BD; Hemmer W; Tsigelny I; Adams JA; Taylor SS
    Biochemistry; 1998 May; 37(21):7708-15. PubMed ID: 9601030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone.
    Irzik K; Pfrötzschner J; Goss T; Ahnert F; Haupt M; Greie JC
    FEBS J; 2011 Sep; 278(17):3041-53. PubMed ID: 21711450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24).
    Bossemeyer D; Engh RA; Kinzel V; Ponstingl H; Huber R
    EMBO J; 1993 Mar; 12(3):849-59. PubMed ID: 8384554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase.
    Madhusudan ; Akamine P; Xuong NH; Taylor SS
    Nat Struct Biol; 2002 Apr; 9(4):273-7. PubMed ID: 11896404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation.
    Kim C; Cheng CY; Saldanha SA; Taylor SS
    Cell; 2007 Sep; 130(6):1032-43. PubMed ID: 17889648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into the phosphoryl transfer catalyzed by cAMP-dependent protein kinase: an X-ray crystallographic study of complexes with various metals and peptide substrate SP20.
    Gerlits O; Waltman MJ; Taylor S; Langan P; Kovalevsky A
    Biochemistry; 2013 May; 52(21):3721-7. PubMed ID: 23672593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.
    James KA; Verkhivker GM
    PLoS One; 2014; 9(11):e113488. PubMed ID: 25427151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of key residues on the reaction mechanism of the cAMP-dependent protein kinase.
    Hutter MC; Helms V
    Protein Sci; 1999 Dec; 8(12):2728-33. PubMed ID: 10631989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PKA: a portrait of protein kinase dynamics.
    Taylor SS; Yang J; Wu J; Haste NM; Radzio-Andzelm E; Anand G
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):259-69. PubMed ID: 15023366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.