These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 14757075)

  • 1. Size-dependent adsorption of 1,4-phenylenediisocyanide onto gold nanoparticle surfaces.
    Lee CR; Kim SI; Yoon CJ; Gong MS; Choi BK; Kim K; Joo SW
    J Colloid Interface Sci; 2004 Mar; 271(1):41-6. PubMed ID: 14757075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetic field enhancement in the gap between two Au nanoparticles: the size of hot site probed by surface-enhanced Raman scattering.
    Kim K; Shin D; Kim KL; Shin KS
    Phys Chem Chem Phys; 2010 Apr; 12(15):3747-52. PubMed ID: 20358069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled interparticle spacing for surface-modified gold nanoparticle aggregates.
    Basu S; Pande S; Jana S; Bolisetty S; Pal T
    Langmuir; 2008 May; 24(10):5562-8. PubMed ID: 18426230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman scattering characterization of 1,4-phenylenediisocyanide in Au-Au and Ag-Au nanogaps.
    Kim K; Choi JY; Shin KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():3-9. PubMed ID: 22326719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of aromatic isocyanides on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering.
    Joo SW; Kim WJ; Yun WS; Hwang S; Choi IS
    Appl Spectrosc; 2004 Feb; 58(2):218-23. PubMed ID: 17140481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.
    Hernández-Castillo MI; Zaca-Morán O; Zaca-Morán P; Orduña-Diaz A; Delgado-Macuil R; Rojas-López M
    J Environ Sci Health B; 2015; 50(8):584-9. PubMed ID: 26065518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman spectroscopic study of 1,4-phenylene diisocyanide adsorbed on gold and platinum-group transition metal electrodes.
    Gruenbaum SM; Henney MH; Kumar S; Zou S
    J Phys Chem B; 2006 Mar; 110(10):4782-92. PubMed ID: 16526715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces.
    Winuprasith T; Suphantharika M; McClements DJ; He L
    J Colloid Interface Sci; 2014 Feb; 416():184-9. PubMed ID: 24370420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and desorption of tyrosine kinase inhibitor erlotinib on gold nanoparticles.
    Lam AT; Yoon J; Ganbold EO; Singh DK; Kim D; Cho KH; Son SJ; Choo J; Lee SY; Kim S; Joo SW
    J Colloid Interface Sci; 2014 Jul; 425():96-101. PubMed ID: 24776669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces.
    de Carvalho DF; da Fonseca BG; Barbosa IL; Landi SM; de Sena LÁ; Archanjo BS; Sant'Ana AC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():108-13. PubMed ID: 23257336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering and density functional theory calculation of uracil on gold and silver nanoparticle surfaces.
    Cho KH; Choo J; Joo SW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1141-5. PubMed ID: 15741113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. microAg particle-based molecular sensing/recognition via surface-enhanced Raman spectroscopy.
    Kim K; Kim NH; Park HK
    Biosens Bioelectron; 2007 Jan; 22(6):1000-5. PubMed ID: 16716586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine: A Preliminary Study.
    Zheng B; Dong JC; Su LZ; Meng M; Zhang YJ; Li JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1987-91. PubMed ID: 30053365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Sub-Micro- and Nanoplastic Particles on Gold Nanoparticle-Based Substrates through Surface-Enhanced Raman Scattering (SERS) Spectroscopy.
    Caldwell J; Taladriz-Blanco P; Rothen-Rutishauser B; Petri-Fink A
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Synthesis of Ultra-Uniform Gold Spherical Nanoparticles with Different Sizes and Their SERS Effects Study].
    Jiang SW; Li X; Zhang YJ; Zhu GS; Li JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):99-103. PubMed ID: 27228749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles.
    Saute B; Narayanan R
    Analyst; 2011 Feb; 136(3):527-32. PubMed ID: 21113557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.