BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 14757257)

  • 1. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament.
    Clement R; Schneider J; Brambs HJ; Wunderlich A; Geiger M; Sander FG
    Comput Methods Programs Biomed; 2004 Feb; 73(2):135-44. PubMed ID: 14757257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study.
    Vikram NR; Senthil Kumar KS; Nagachandran KS; Hashir YM
    Indian J Dent Res; 2012; 23(2):213-20. PubMed ID: 22945712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study.
    Liao Z; Chen J; Li W; Darendeliler MA; Swain M; Li Q
    Arch Oral Biol; 2016 Jun; 66():98-107. PubMed ID: 26943815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A validated finite element method study of orthodontic tooth movement in the human subject.
    Jones ML; Hickman J; Middleton J; Knox J; Volp C
    J Orthod; 2001 Mar; 28(1):29-38. PubMed ID: 11254801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical determination of stress patterns in the periodontal ligament during orthodontic tooth movement.
    Van Schepdael A; Geris L; Vander Sloten J
    Med Eng Phys; 2013 Mar; 35(3):403-10. PubMed ID: 23046973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element simulation of the behavior of the periodontal ligament: a validated nonlinear contact model.
    Tuna M; Sunbuloglu E; Bozdag E
    J Biomech; 2014 Sep; 47(12):2883-90. PubMed ID: 25110168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Semi-automatic generation of finite element meshes fo dental preparations].
    Vollmer D; Haase A; Bourauel C
    Biomed Tech (Berl); 2000 Mar; 45(3):62-9. PubMed ID: 10761287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A periodontal ligament driven remodeling algorithm for orthodontic tooth movement.
    Chen J; Li W; Swain MV; Ali Darendeliler M; Li Q
    J Biomech; 2014 May; 47(7):1689-95. PubMed ID: 24703301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical environment change in root, periodontal ligament, and alveolar bone in response to two canine retraction treatment strategies.
    Jiang F; Xia Z; Li S; Eckert G; Chen J
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):29-38. PubMed ID: 25865531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of variable periodontal ligament thickness and its non-linear material properties on the location of a tooth's centre of resistance.
    Schmidt F; Lapatki BG
    J Biomech; 2019 Sep; 94():211-218. PubMed ID: 31427090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanical function of periodontal ligament fibres in orthodontic tooth movement.
    McCormack SW; Witzel U; Watson PJ; Fagan MJ; Gröning F
    PLoS One; 2014; 9(7):e102387. PubMed ID: 25036099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement.
    Ammar HH; Ngan P; Crout RJ; Mucino VH; Mukdadi OM
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):e59-71. PubMed ID: 21195258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis.
    Papageorgiou SN; Keilig L; Hasan I; Jäger A; Bourauel C
    Eur J Orthod; 2016 Jun; 38(3):300-7. PubMed ID: 26174769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tridimensional finite element analysis of teeth movement induced by different headgear forces.
    Maruo IT; Maruo H; Saga AY; de Oliveira DD; Argenta MA; Tanaka OM
    Prog Orthod; 2016 Dec; 17(1):18. PubMed ID: 27264500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of orthodontic tooth movement using CT image-based voxel finite element models with the level set method.
    Hasegawa M; Adachi T; Takano-Yamamoto T
    Comput Methods Biomech Biomed Engin; 2016; 19(5):474-83. PubMed ID: 26218656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of different alveolar bone finite element models on the biomechanical responses of periodontal ligament].
    Wu J; Liu Y; Li B; Wang D; Dong X; Zhou J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):295-302. PubMed ID: 33913289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic finite element mesh generation for maxillary second premolar.
    Lin CL; Chang CH; Cheng CS; Wang CH; Lee HE
    Comput Methods Programs Biomed; 1999 Jun; 59(3):187-95. PubMed ID: 10386768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element analysis of the maxillary first molar PDL with maxillary protraction in a mixed dentition Class III malocclusion.
    Tanaka OM; Araújo EA; Oliver DR; Behrents RG
    Orthod Craniofac Res; 2015 Nov; 18(4):242-50. PubMed ID: 26333535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Effects of Different Auxiliary-Aligner Designs for the Extrusion of an Upper Central Incisor: A Finite Element Analysis.
    Savignano R; Valentino R; Razionale AV; Michelotti A; Barone S; D'Antò V
    J Healthc Eng; 2019; 2019():9687127. PubMed ID: 31485303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The finite element method: a tool to study orthodontic tooth movement.
    Cattaneo PM; Dalstra M; Melsen B
    J Dent Res; 2005 May; 84(5):428-33. PubMed ID: 15840778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.