BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14757361)

  • 1. A multichannel electronic monitor of acoustic behaviors, and software to parse individual channels.
    Hedrick AV; Mulloney B
    J Neurosci Methods; 2004 Feb; 133(1-2):201-10. PubMed ID: 14757361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ground offers acoustic efficiency gains for crickets and other calling animals.
    Brandt EE; Duke S; Wang H; Mhatre N
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2302814120. PubMed ID: 37934821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using image processing to detect and classify narrow-band cricket and frog calls.
    Brandes TS; Naskrecki P; Figueroa HK
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2950-7. PubMed ID: 17139751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic evolution in crickets: need for phylogenetic study and a reappraisal of signal effectiveness.
    Desutter-Grandcolas L; Robillard T
    An Acad Bras Cienc; 2004 Jun; 76(2):301-15. PubMed ID: 15258644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer model of some aspects of the evolution of acoustic communication in crickets.
    Ozerski PV; Shchekanov EE
    Dokl Biol Sci; 2003; 389():160-2. PubMed ID: 12854419
    [No Abstract]   [Full Text] [Related]  

  • 6. Validation of an acoustic location system to monitor Bornean orangutan (Pongo pygmaeus wurmbii) long calls.
    Spillmann B; van Noordwijk MA; Willems EP; Mitra Setia T; Wipfli U; van Schaik CP
    Am J Primatol; 2015 Jul; 77(7):767-76. PubMed ID: 25773926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [CHANGE IN THE PARAMETERS OF CALLING SONG OF THE CRICKET GRYLLUS BIMACULATUS DEG. IN THE PROCESS OF INDIVIDUAL DEVELOPMENT].
    Zhemchuzhnikov MK; Knyazev AN
    Zh Evol Biokhim Fiziol; 2015; 51(4):307-10. PubMed ID: 26547957
    [No Abstract]   [Full Text] [Related]  

  • 8. A computer-based rotation and activity monitor for non-human primates and other animals.
    Schmidt RH; Dubach MD
    J Neurosci Methods; 1988 Jul; 24(3):243-51. PubMed ID: 3138505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No Effect of Body Size on the Frequency of Calling and Courtship Song in the Two-Spotted Cricket, Gryllus bimaculatus.
    Miyashita A; Kizaki H; Sekimizu K; Kaito C
    PLoS One; 2016; 11(1):e0146999. PubMed ID: 26785351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calling Behavior of Male Acheta domesticus Crickets Infected with Paragordius varius (Nematomorpha: Gordiida).
    Barquin A; McGehee B; Sedam RT; Gordy WL; Hanelt B; de Valdez MR
    J Parasitol; 2015 Aug; 101(4):393-7. PubMed ID: 25978343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of acoustic communication in crickets: phylogeny of Eneopterinae reveals an adaptive radiation involving high-frequency calling (Orthoptera, Grylloidea, Eneopteridae).
    Robillard T; Desutter-Grandcolas L
    An Acad Bras Cienc; 2004 Jun; 76(2):297-300. PubMed ID: 15258643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the efficiency of sound production.
    Prestwich KN
    Physiol Biochem Zool; 2007; 80(1):157-65. PubMed ID: 17160888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound imaging of nocturnal animal calls in their natural habitat.
    Mizumoto T; Aihara I; Otsuka T; Takeda R; Aihara K; Okuno HG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Sep; 197(9):915-21. PubMed ID: 21584762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inbreeding and advertisement calling in the cricket Teleogryllus commodus: laboratory and field experiments.
    Drayton JM; Milner RN; Hunt J; Jennions MD
    Evolution; 2010 Oct; 64(10):3069-83. PubMed ID: 20662924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A blind source separation approach for humpback whale song separation.
    Zhang Z; White PR
    J Acoust Soc Am; 2017 Apr; 141(4):2705. PubMed ID: 28464617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complex stridulatory behavior of the cricket Eneoptera guyanensis Chopard (Orthoptera: Grylloidea: Eneopterinae).
    Robillard T; Desutter-Grandcolas L
    J Insect Physiol; 2011 Jun; 57(6):694-703. PubMed ID: 21315079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic detection of biosonar activity of deep diving odontocetes at Josephine Seamount High Seas Marine Protected Area.
    Giorli G; Au WW; Ou H; Jarvis S; Morrissey R; Moretti D
    J Acoust Soc Am; 2015 May; 137(5):2495-501. PubMed ID: 25994682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.
    Helble TA; D'Spain GL; Campbell GS; Hildebrand JA
    J Acoust Soc Am; 2013 Nov; 134(5):EL400-6. PubMed ID: 24181982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand-held computer program for field-capture and analysis of herbage yield and composition data using a modified dry-weight-rank and yield estimate method.
    Griffin GF; Bastin GN
    Comput Appl Biosci; 1988 Apr; 4(2):239-42. PubMed ID: 3167595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.