These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 14757448)

  • 1. Evaluation of a computational model used to predict the patellofemoral contact pressure distribution.
    Elias JJ; Wilson DR; Adamson R; Cosgarea AJ
    J Biomech; 2004 Mar; 37(3):295-302. PubMed ID: 14757448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the lateral force acting on the patella does not consistently decrease patellofemoral pressures.
    Elias JJ; Cech JA; Weinstein DM; Cosgrea AJ
    Am J Sports Med; 2004; 32(5):1202-8. PubMed ID: 15262643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading.
    Goudakos IG; König C; Schöttle PB; Taylor WR; Singh NB; Roberts I; Streitparth F; Duda GN; Heller MO
    J Biomech; 2009 Nov; 42(15):2590-6. PubMed ID: 19656517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study.
    Ostermeier S; Holst M; Hurschler C; Windhagen H; Stukenborg-Colsman C
    Knee Surg Sports Traumatol Arthrosc; 2007 May; 15(5):547-54. PubMed ID: 17225178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling: an alternative approach for investigating patellofemoral mechanics.
    Elias JJ; Cosgarea AJ
    Sports Med Arthrosc Rev; 2007 Jun; 15(2):89-94. PubMed ID: 17505324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing two estimations of the quadriceps force distribution for use during patellofemoral simulation.
    Elias JJ; Bratton DR; Weinstein DM; Cosgarea AJ
    J Biomech; 2006; 39(5):865-72. PubMed ID: 16488225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact.
    Huberti HH; Hayes WC
    J Bone Joint Surg Am; 1984 Jun; 66(5):715-24. PubMed ID: 6725318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of patellofemoral joint contact geometry on the modeling of three dimensional patellofemoral joint forces.
    Powers CM; Chen YJ; Scher I; Lee TQ
    J Biomech; 2006; 39(15):2783-91. PubMed ID: 16307751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis to characterize how varying patellar loading influences pressure applied to cartilage: model evaluation.
    Shah KS; Saranathan A; Koya B; Elias JJ
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1509-15. PubMed ID: 24874443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanics of the human patella during passive knee flexion.
    Heegaard J; Leyvraz PF; Curnier A; Rakotomanana L; Huiskes R
    J Biomech; 1995 Nov; 28(11):1265-79. PubMed ID: 8522541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro forces in the normal and cruciate-deficient knee during simulated squatting motion.
    Singerman R; Berilla J; Archdeacon M; Peyser A
    J Biomech Eng; 1999 Apr; 121(2):234-42. PubMed ID: 10211459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct in vitro determination of the patellofemoral contact force for normal knees.
    Singerman R; Berilla J; Davy DT
    J Biomech Eng; 1995 Feb; 117(1):8-14. PubMed ID: 7609489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of fixed rotational deformities of the femur on the patellofemoral contact pressures in human cadaver knees.
    Lee TQ; Anzel SH; Bennett KA; Pang D; Kim WC
    Clin Orthop Relat Res; 1994 May; (302):69-74. PubMed ID: 8168325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in patellofemoral kinematics due to changes in quadriceps loading configuration during in vitro testing.
    Shalhoub S; Maletsky LP
    J Biomech; 2014 Jan; 47(1):130-6. PubMed ID: 24268796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro characterization of the relationship between the Q-angle and the lateral component of the quadriceps force.
    Elias JJ; Mattessich SM; Kumagai M; Mizuno Y; Cosgarea AJ; Chao EY
    Proc Inst Mech Eng H; 2004; 218(1):63-7. PubMed ID: 14982347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete element analysis for characterizing the patellofemoral pressure distribution: model evaluation.
    Elias JJ; Saranathan A
    J Biomech Eng; 2013 Aug; 135(8):81011. PubMed ID: 23719962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics.
    Hefzy MS; Yang H
    J Biomed Eng; 1993 Jul; 15(4):289-302. PubMed ID: 8361154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q-angle influences tibiofemoral and patellofemoral kinematics.
    Mizuno Y; Kumagai M; Mattessich SM; Elias JJ; Ramrattan N; Cosgarea AJ; Chao EY
    J Orthop Res; 2001 Sep; 19(5):834-40. PubMed ID: 11562129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of in vivo patellofemoral kinematics for subjects having high-flexion total knee arthroplasty implant with patients having normal knees.
    Leszko F; Sharma A; Komistek RD; Mahfouz MR; Cates HE; Scuderi GR
    J Arthroplasty; 2010 Apr; 25(3):398-404. PubMed ID: 19232891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study.
    Elias JJ; Kirkpatrick MS; Saranathan A; Mani S; Smith LG; Tanaka MJ
    Clin Biomech (Bristol, Avon); 2011 Oct; 26(8):841-6. PubMed ID: 21543144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.