These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 14757450)
1. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. Shelburne KB; Pandy MG; Torry MR J Biomech; 2004 Mar; 37(3):313-9. PubMed ID: 14757450 [TBL] [Abstract][Full Text] [Related]
2. Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach. Shao Q; MacLeod TD; Manal K; Buchanan TS Ann Biomed Eng; 2011 Jan; 39(1):110-21. PubMed ID: 20683675 [TBL] [Abstract][Full Text] [Related]
3. Muscle, ligament, and joint-contact forces at the knee during walking. Shelburne KB; Torry MR; Pandy MG Med Sci Sports Exerc; 2005 Nov; 37(11):1948-56. PubMed ID: 16286866 [TBL] [Abstract][Full Text] [Related]
4. Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee. Liu W; Maitland ME Ann Biomed Eng; 2003 Nov; 31(10):1153-61. PubMed ID: 14649489 [TBL] [Abstract][Full Text] [Related]
5. Pattern of anterior cruciate ligament force in normal walking. Shelburne KB; Pandy MG; Anderson FC; Torry MR J Biomech; 2004 Jun; 37(6):797-805. PubMed ID: 15111067 [TBL] [Abstract][Full Text] [Related]
6. High Axial Loads While Walking Increase Anterior Tibial Translation in Intact and Anterior Cruciate Ligament-Deficient Knees. Kim JG; Bae TS; Lee SH; Jang KM; Jeong JS; Kyung BS; Lim HC; Ahn JH; Bae JH; Wang JH Arthroscopy; 2015 Jul; 31(7):1289-95. PubMed ID: 25842990 [TBL] [Abstract][Full Text] [Related]
7. Human hip and knee torque accommodations to anterior cruciate ligament dysfunction. Osternig LR; Ferber R; Mercer J; Davis H Eur J Appl Physiol; 2000 Sep; 83(1):71-6. PubMed ID: 11072776 [TBL] [Abstract][Full Text] [Related]
8. The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Li G; Suggs J; Gill T Ann Biomed Eng; 2002 May; 30(5):713-20. PubMed ID: 12108845 [TBL] [Abstract][Full Text] [Related]
9. Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal Tibial Rotation In Vitro. Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE Clin Orthop Relat Res; 2017 Oct; 475(10):2385-2396. PubMed ID: 28455730 [TBL] [Abstract][Full Text] [Related]
10. Changes in gastrocnemii activation at mid-to-late stance markedly affects the intact and anterior cruciate ligament deficient knee biomechanics and stability in gait. Sharifi M; Shirazi-Adl A Knee; 2021 Mar; 29():530-540. PubMed ID: 33756263 [TBL] [Abstract][Full Text] [Related]
11. The anterior cruciate ligament-deficient knee with varus alignment. An analysis of gait adaptations and dynamic joint loadings. Noyes FR; Schipplein OD; Andriacchi TP; Saddemi SR; Weise M Am J Sports Med; 1992; 20(6):707-16. PubMed ID: 1456365 [TBL] [Abstract][Full Text] [Related]
12. Effect of muscle compensation on knee instability during ACL-deficient gait. Shelburne KB; Torry MR; Pandy MG Med Sci Sports Exerc; 2005 Apr; 37(4):642-8. PubMed ID: 15809564 [TBL] [Abstract][Full Text] [Related]
13. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. Andriacchi TP; Dyrby CO J Biomech; 2005 Feb; 38(2):293-8. PubMed ID: 15598456 [TBL] [Abstract][Full Text] [Related]
14. Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait. Marouane H; Shirazi-Adl A; Hashemi J J Biomech; 2015 Jul; 48(10):1899-905. PubMed ID: 25920895 [TBL] [Abstract][Full Text] [Related]
15. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Wünschel M; Müller O; Lo J; Obloh C; Wülker N Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837 [TBL] [Abstract][Full Text] [Related]
16. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk. Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE Am J Sports Med; 2015 Sep; 43(9):2259-69. PubMed ID: 26150588 [TBL] [Abstract][Full Text] [Related]
17. Computational stability of human knee joint at early stance in Gait: Effects of muscle coactivity and anterior cruciate ligament deficiency. Sharifi M; Shirazi-Adl A; Marouane H J Biomech; 2017 Oct; 63():110-116. PubMed ID: 28865708 [TBL] [Abstract][Full Text] [Related]
18. Different knee joint loading patterns in ACL deficient copers and non-copers during walking. Alkjær T; Henriksen M; Simonsen EB Knee Surg Sports Traumatol Arthrosc; 2011 Apr; 19(4):615-21. PubMed ID: 21052980 [TBL] [Abstract][Full Text] [Related]
19. The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait. Liu W; Maitland ME J Biomech; 2000 Jul; 33(7):871-9. PubMed ID: 10831762 [TBL] [Abstract][Full Text] [Related]
20. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Ellis BJ; Lujan TJ; Dalton MS; Weiss JA J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]