These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 14757455)
1. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. Wilson W; van Donkelaar CC; van Rietbergen B; Ito K; Huiskes R J Biomech; 2004 Mar; 37(3):357-66. PubMed ID: 14757455 [TBL] [Abstract][Full Text] [Related]
2. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103 [TBL] [Abstract][Full Text] [Related]
4. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint. Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762 [TBL] [Abstract][Full Text] [Related]
5. Causes of mechanically induced collagen damage in articular cartilage. Wilson W; van Burken C; van Donkelaar C; Buma P; van Rietbergen B; Huiskes R J Orthop Res; 2006 Feb; 24(2):220-8. PubMed ID: 16435355 [TBL] [Abstract][Full Text] [Related]
6. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties. Jahangir S; Esrafilian A; Ebrahimi M; Stenroth L; Alkjær T; Henriksen M; Englund M; Mononen ME; Korhonen RK; Tanska P J Biomech; 2023 Nov; 160():111800. PubMed ID: 37797566 [TBL] [Abstract][Full Text] [Related]
8. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage. Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384 [TBL] [Abstract][Full Text] [Related]
9. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. Korhonen RK; Julkunen P; Wilson W; Herzog W J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490 [TBL] [Abstract][Full Text] [Related]
10. Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis: a potential functional imaging technique. Julkunen P; Korhonen RK; Nissi MJ; Jurvelin JS Phys Med Biol; 2008 May; 53(9):2425-38. PubMed ID: 18421123 [TBL] [Abstract][Full Text] [Related]
11. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics. Korhonen RK; Herzog W J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762 [TBL] [Abstract][Full Text] [Related]
12. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity. Mäkelä JTA; Korhonen RK J Biomech; 2016 Jun; 49(9):1734-1741. PubMed ID: 27130474 [TBL] [Abstract][Full Text] [Related]
13. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study. Julkunen P; Korhonen RK; Herzog W; Jurvelin JS Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536 [TBL] [Abstract][Full Text] [Related]
14. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis. Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088 [TBL] [Abstract][Full Text] [Related]
15. Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization. Li LP; Herzog W J Biomech; 2004 Mar; 37(3):375-82. PubMed ID: 14757457 [TBL] [Abstract][Full Text] [Related]
17. A multi-scale elasto-plastic model of articular cartilage. Adouni M; Dhaher YY J Biomech; 2016 Sep; 49(13):2891-2898. PubMed ID: 27435568 [TBL] [Abstract][Full Text] [Related]
18. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. Julkunen P; Wilson W; Jurvelin JS; Rieppo J; Qu CJ; Lammi MJ; Korhonen RK J Biomech; 2008; 41(9):1978-86. PubMed ID: 18490021 [TBL] [Abstract][Full Text] [Related]
19. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. Soulhat J; Buschmann MD; Shirazi-Adl A J Biomech Eng; 1999 Jun; 121(3):340-7. PubMed ID: 10396701 [TBL] [Abstract][Full Text] [Related]
20. Analysis of articular cartilage as a composite using nonlinear membrane elements for collagen fibrils. Shirazi R; Shirazi-Adl A Med Eng Phys; 2005 Dec; 27(10):827-35. PubMed ID: 16002317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]