These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 14757732)

  • 41. Quantitative trait loci affecting life span in replicated populations of Drosophila melanogaster. II. Response to selection.
    Valenzuela RK; Forbes SN; Keim P; Service PM
    Genetics; 2004 Sep; 168(1):313-24. PubMed ID: 15454545
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Interaction of directional and stabilizing selection for wing characteristics in Drosophila melanogaster].
    Lazebnyĭ OE; Imasheva AG; Zhivotovskiĭ LA
    Genetika; 1990 Nov; 26(11):1960-8. PubMed ID: 2127406
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variation in fine-scale recombination rate in temperature-evolved Drosophila melanogaster populations in response to selection.
    Winbush A; Singh ND
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35961026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Associations between environmental stress, selection history, and quantitative genetic variation in Drosophila melanogaster.
    Swindell WR; Bouzat JL
    Genetica; 2006 May; 127(1-3):311-20. PubMed ID: 16850235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic recombination and directional selection for DDT resistance in Drosophila melanogaster.
    Flexon PB; Rodell CF
    Nature; 1982 Aug; 298(5875):672-4. PubMed ID: 6808396
    [No Abstract]   [Full Text] [Related]  

  • 46. POLYGENIC MUTATION IN DROSOPHILA MELANOGASTER: ESTIMATES FROM DIVERGENCE AMONG INBRED STRAINS.
    Mackay TFC; Lyman RF; Jackson MS; Terzian C; Hill WG
    Evolution; 1992 Apr; 46(2):300-316. PubMed ID: 28564027
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The response to artificial selection from new mutations in Drosophila melanogaster.
    Caballero A; Toro MA; López-Fanjul C
    Genetics; 1991 May; 128(1):89-102. PubMed ID: 1905662
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Genetic effects of destabilizing selection for adaptively important traits in Drosophila melanogaster lines].
    Kaĭdanov LZ; Myl'nikov SV; Galkin AP; Iovleva OV; Kuznetsova OV; Zimina NV
    Genetika; 1997 Aug; 33(8):1102-9. PubMed ID: 9378302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster.
    Feder ME; Bedford TB; Albright DR; Michalak P
    Physiol Biochem Zool; 2002; 75(4):325-34. PubMed ID: 12324888
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Do males matter? Testing the effects of male genetic background on female meiotic crossover rates in Drosophila melanogaster.
    Hunter CM; Singh ND
    Evolution; 2014 Sep; 68(9):2718-26. PubMed ID: 24889512
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relaxation of selection with equalization of parental contributions in conservation programs: an experimental test with Drosophila melanogaster.
    Rodríguez-Ramilo ST; Morán P; Caballero A
    Genetics; 2006 Feb; 172(2):1043-54. PubMed ID: 16299385
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hill-Robertson interference is a minor determinant of variations in codon bias across Drosophila melanogaster and Caenorhabditis elegans genomes.
    Marais G; Piganeau G
    Mol Biol Evol; 2002 Sep; 19(9):1399-406. PubMed ID: 12200468
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regeneration of the variance of metric traits by spontaneous mutation in a Drosophila population.
    Amador C; García-Dorado A; Bersabé D; López-Fanjul C
    Genet Res (Camb); 2010 Apr; 92(2):91-102. PubMed ID: 20515513
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Can polymorphism be maintained by selection favouring an intermediate optimum phenotype?
    Semeonoff R
    Heredity (Edinb); 1977 Dec; 39(3):373-81. PubMed ID: 415022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of recombination on background selection.
    Nordborg M; Charlesworth B; Charlesworth D
    Genet Res; 1996 Apr; 67(2):159-74. PubMed ID: 8801188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The coalescent process in models with selection, recombination and geographic subdivision.
    Kaplan N; Hudson RR; Iizuka M
    Genet Res; 1991 Feb; 57(1):83-91. PubMed ID: 1904048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster.
    Garlapow ME; Everett LJ; Zhou S; Gearhart AW; Fay KA; Huang W; Morozova TV; Arya GH; Turlapati L; St Armour G; Hussain YN; McAdams SE; Fochler S; Mackay TF
    Behav Genet; 2017 Mar; 47(2):227-243. PubMed ID: 27704301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic basis for remating in Drosophila melanogaster. VI. Recombination analysis.
    Fukui HH; Gromko MH
    Behav Genet; 1991 Mar; 21(2):199-209. PubMed ID: 1904716
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Selection on viability of individuals heterozygous for the temperature-sensitive lethal mutation l(2)M167(DTS) in experimental populations of Drosophila melanogaster].
    Kulikov AM; Marec F; Mitrofanov VG
    Genetika; 2005 Jun; 41(6):759-66. PubMed ID: 16080600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Male-mediated effects on female meiotic recombination.
    Stevison LS
    Evolution; 2012 Mar; 66(3):905-911. PubMed ID: 22380449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.