BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 14757954)

  • 21. Segmental stability in orthognathic surgery: hydroxyapatite/Poly-l-lactide osteoconductive composite versus titanium miniplate osteosyntheses.
    Landes CA; Ballon A; Tran A; Ghanaati S; Sader R
    J Craniomaxillofac Surg; 2014 Sep; 42(6):930-42. PubMed ID: 24534684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering.
    Qi H; Ye Z; Ren H; Chen N; Zeng Q; Wu X; Lu T
    Life Sci; 2016 Mar; 148():139-44. PubMed ID: 26874032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Foreign-Body Reaction to Bioabsorbable Plate and Screw in Craniofacial Surgery.
    Kamata M; Sakamoto Y; Kishi K
    J Craniofac Surg; 2019 Jan; 30(1):e34-e36. PubMed ID: 30475293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of bioresorbable, unsintered hydroxyapatite/poly-L-lactide composite films on spinal cord, nerve roots, and epidural space.
    Matsumoto M; Chosa E; Nabeshima K; Shikinami Y; Tajima N
    J Biomed Mater Res; 2002 Apr; 60(1):101-9. PubMed ID: 11835165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds.
    Woo KM; Seo J; Zhang R; Ma PX
    Biomaterials; 2007 Jun; 28(16):2622-30. PubMed ID: 17320948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray with particulate cellular bone and marrow and platelet-rich plasma for a mandibular defect: evaluation of tray fit and bone quality in a dog model.
    Matsuo A; Takahashi H; Abukawa H; Chikazu D
    J Craniomaxillofac Surg; 2012 Dec; 40(8):e453-60. PubMed ID: 22503081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Biocompatibility evaluation of lactide--trimethylene carbonate copolymers].
    Tu S; Yang J; Chen Y; Luo X; Li S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):595-9. PubMed ID: 20649027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in chemical composition and internal structure influence systemic host response to implants of biomaterials.
    Scaglione S; Cilli M; Fiorini M; Quarto R; Pennesi G
    Int J Artif Organs; 2011 May; 34(5):422-31. PubMed ID: 21534242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of glycerol-L-lactide coating polymer on bone ingrowth of bFGF-coated hydroxyapatite implants.
    Alt V; Pfefferle HJ; Kreuter J; Stahl JP; Pavlidis T; Meyer C; Mockwitz J; Wenisch S; Schnettler R
    J Control Release; 2004 Sep; 99(1):103-11. PubMed ID: 15342184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation.
    Fukui N; Sato T; Kuboki Y; Aoki H
    Biomed Mater Eng; 2008; 18(1):25-33. PubMed ID: 18198404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Research on cell affinity of poly-L-lactide/porcine-derived xenogeneic bone composite in vitro].
    Qu X; Bei J; Wang S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):110-4. PubMed ID: 17357454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycerol-l-lactide coating polymer leads to delay in bone ingrowth in hydroxyapatite implants.
    Schnettler R; Pfefferle HJ; Kilian O; Heiss C; Kreuter J; Lommel D; Pavlidis T; Stahl JP; Meyer C; Wenisch S; Alt V
    J Control Release; 2005 Aug; 106(1-2):154-61. PubMed ID: 15936110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Reaction of bone tissue elements on synthetic bioresorbable materials based on lactic and glycolic acids].
    Kulakov AA; Grigor'ian AS
    Stomatologiia (Mosk); 2014; 93(4):4-7. PubMed ID: 25377570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone.
    Walton M; Cotton NJ
    J Biomater Appl; 2007 Apr; 21(4):395-411. PubMed ID: 16684797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The preliminary evaluation of HAP + TCP composite material biodegradation after implantation in muscular tissue of rats.
    Domagała Z; Sliwa J; Hajek E
    Polim Med; 2001; 31(3-4):52-60. PubMed ID: 11935940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation and strength retention of poly-L-lactide screws in vivo. An experimental long-term study in sheep.
    Jukkala-Partio K; Pohjonen T; Laitinen O; Partio EK; Vasenius J; Toivonen T; Kinnunen J; Törmälä P; Rokkanen P
    Ann Chir Gynaecol; 2001; 90(3):219-24. PubMed ID: 11695800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a novel biomaterial, hydroxyapatite/collagen (HAp/Col) composite for medical use.
    Itoh S; Kikuchi M; Koyama Y; Matumoto HN; Takakuda K; Shinomiya K; Tanaka J
    Biomed Mater Eng; 2005; 15(1-2):29-41. PubMed ID: 15623928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.