These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14758649)

  • 21. Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit-Harper and Ferry-Porter laws.
    Rovamo J; Raninen A
    Vision Res; 1988; 28(7):785-90. PubMed ID: 3227655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical acuity and the luminous flux collected by retinal ganglion cells at various eccentricities in human rod and cone vision.
    Rovamo J; Raninen A
    Vision Res; 1990; 30(1):11-21. PubMed ID: 2321356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating the linkage between mesopic spatial summation and variations in retinal ganglion cell density across the central visual field.
    Hunter AML; Anderson RS; Redmond T; Garway-Heath DF; Mulholland PJ
    Ophthalmic Physiol Opt; 2023 Sep; 43(5):1179-1189. PubMed ID: 37118942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal and spatial summation in the human rod visual system.
    Sharpe LT; Stockman A; Fach CC; Markstahler U
    J Physiol; 1993 Apr; 463():325-48. PubMed ID: 8246186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Photoreceptor organization of the receptive fields of the frog retina and the patterns of visual signal processing].
    Funtikov BA; Koreshev AIa
    Fiziol Zh SSSR Im I M Sechenova; 1984 Oct; 70(10):1388-93. PubMed ID: 6510528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal integration of light by the cat X-cell center under photopic and scotopic conditions.
    Troy JB; Bohnsack DL; Chen J; Guo X; Passaglia CL
    Vis Neurosci; 2005; 22(4):493-500. PubMed ID: 16212706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes.
    Hart NS; Coimbra JP; Collin SP; Westhoff G
    J Comp Neurol; 2012 Apr; 520(6):1246-61. PubMed ID: 22020556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increment thresholds with various low background intensities at different locations in the peripheral retina.
    Lelkens AM; Zuidema P
    J Opt Soc Am; 1983 Oct; 73(10):1372-8. PubMed ID: 6644397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial summation across the central visual field: implications for visual field testing.
    Khuu SK; Kalloniatis M
    J Vis; 2015 Jan; 15(1):15.1.6. PubMed ID: 25583876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.
    Zhu HF; Zele AJ; Suheimat M; Lambert AJ; Atchison DA
    J Vis; 2016 Aug; 16(10):21. PubMed ID: 27580041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The quantic and statistical bases of visual excitation.
    BAUMGARDT EL
    J Gen Physiol; 1948 Jan; 31(3):269-90. PubMed ID: 18920615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topography of ganglion cells and photoreceptors in the sheep retina.
    Shinozaki A; Hosaka Y; Imagawa T; Uehara M
    J Comp Neurol; 2010 Jun; 518(12):2305-15. PubMed ID: 20437529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: morphology and physiology.
    Silveira LC; Lee BB; Yamada ES; Kremers J; Hunt DM; Martin PR; Gomes FL
    Vis Neurosci; 1999; 16(2):333-43. PubMed ID: 10367967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple retinal mechanism contributes to perceptual interactions between rod- and cone-mediated responses in primates.
    Grimes WN; Graves LR; Summers MT; Rieke F
    Elife; 2015 Jun; 4():. PubMed ID: 26098124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity to stimulus onset and offset in the S-cone pathway.
    Racheva K; Vassilev A
    Vision Res; 2008 Apr; 48(9):1125-36. PubMed ID: 18343479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cone inputs to murine retinal ganglion cells.
    Ekesten B; Gouras P; Yamamoto S
    Vision Res; 2000; 40(19):2573-7. PubMed ID: 10958909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers.
    Garway-Heath DF; Caprioli J; Fitzke FW; Hitchings RA
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1774-82. PubMed ID: 10845598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing Computation in the Primate Visual System at Single-Cone Resolution.
    Kling A; Field GD; Brainard DH; Chichilnisky EJ
    Annu Rev Neurosci; 2019 Jul; 42():169-186. PubMed ID: 30857477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input?
    Sun H; Smithson HE; Zaidi Q; Lee BB
    Vis Neurosci; 2006; 23(3-4):441-6. PubMed ID: 16961978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.