These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 14758898)

  • 1. Application of Neomysis awatschensis as a standard marine toxicity test organism in China.
    Yan T; Zhou MJ; Tan ZJ; Li ZY; Li J; Yu RC; Wang LP
    J Environ Sci (China); 2003 Nov; 15(6):791-5. PubMed ID: 14758898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute and sublethal effects of organotin compounds on aquatic biota: an interpretative literature evaluation.
    Hall LW; Pinkney AE
    Crit Rev Toxicol; 1985; 14(2):159-209. PubMed ID: 3888535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acute and chronic toxicity of ammonia to marine fish and a mysid.
    Miller DC; Poucher S; Cardin JA; Hansen D
    Arch Environ Contam Toxicol; 1990; 19(1):40-8. PubMed ID: 2331153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of paralytic shellfish toxins via marine food chains: a simulated experiment.
    Tan ZJ; Yan T; Yu RC; Zhou MJ
    Biomed Environ Sci; 2007 Jun; 20(3):235-41. PubMed ID: 17672215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper toxicity in the marine copepod Tigropus japonicus: low variability and high reproducibility of repeated acute and life-cycle tests.
    Kwok KW; Leung KM; Bao VW; Lee JS
    Mar Pollut Bull; 2008; 57(6-12):632-6. PubMed ID: 18474379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated approach to the toxicity assessment of Irish marine sediments: validation of established marine bioassays for the monitoring of Irish marine sediments.
    Macken A; Giltrap M; Foley B; McGovern E; McHugh B; Davoren M
    Environ Int; 2008 Oct; 34(7):1023-32. PubMed ID: 18456331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo assembly and annotation of the marine mysid (Neomysis awatschensis) transcriptome.
    Kim HS; Hwang DS; Lee BY; Park JC; Lee YH; Lee JS
    Mar Genomics; 2016 Aug; 28():41-43. PubMed ID: 27189440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of marine toxicity data for ordnance compounds.
    Nipper M; Carr RS; Biedenbach JM; Hooten RL; Miller K; Saepoff S
    Arch Environ Contam Toxicol; 2001 Oct; 41(3):308-18. PubMed ID: 11503067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of acute and chronic toxicity methods for marine sediments.
    Kennedy AJ; Steevens JA; Lotufo GR; Farrar JD; Reiss MR; Kropp RK; Doi J; Bridges TS
    Mar Environ Res; 2009 Sep; 68(3):118-27. PubMed ID: 19481793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Current status of organotin studied in China and abroad].
    Jiang G
    Wei Sheng Yan Jiu; 2001 Jan; 30(1):1-3. PubMed ID: 11255750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organotin pollution in China: an overview of the current state and potential health risk.
    Cao D; Jiang G; Zhou Q; Yang R
    J Environ Manage; 2009 Feb; 90 Suppl 1():S16-24. PubMed ID: 18973975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological risk assessments of endocrine disrupting organotin compounds using marine neogastropods in Hong Kong.
    Leung KM; Kwong RP; Ng WC; Horiguchi T; Qiu JW; Yang R; Song M; Jiang G; Zheng GJ; Lam PK
    Chemosphere; 2006 Nov; 65(6):922-38. PubMed ID: 16674992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations.
    Burgess RM; Perron MM; Cantwell MG; Ho KT; Serbst JR; Pelletier MC
    Arch Environ Contam Toxicol; 2004 Nov; 47(4):440-7. PubMed ID: 15499493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of a "biomarker of toxicity" from the proteome of the paralytic shellfish toxin-producing dinoflagellate Alexandrium tamarense (Dinophyceae).
    Chan LL; Sit WH; Lam PK; Hsieh DP; Hodgkiss IJ; Wan JM; Ho AY; Choi NM; Wang DZ; Dudgeon D
    Proteomics; 2006 Jan; 6(2):654-66. PubMed ID: 16342137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute toxicity of six freshwater mussel species (Glochidia) to six chemicals: implications for Daphnids and Utterbackia imbecillis as surrogates for protection of freshwater mussels (Unionidae).
    Milam CD; Farris JL; Dwyer FJ; Hardesty DK
    Arch Environ Contam Toxicol; 2005 Feb; 48(2):166-73. PubMed ID: 15772883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Storage duration and temperature and the acute toxicities of estuarine sediments to Mysidopsis bahia and Leptocheirus plumulosus.
    Norton BL; Lewis MA; Mayer FL
    Bull Environ Contam Toxicol; 1999 Aug; 63(2):157-66. PubMed ID: 10441631
    [No Abstract]   [Full Text] [Related]  

  • 18. Acute toxicity of malathion, tetrabromobisphenol-A, and tributyltin chloride to mysids (Mysidopsis bahia) of three ages.
    Goodman LR; Cripe GM; Moody PH; Halsell DG
    Bull Environ Contam Toxicol; 1988 Nov; 41(5):746-53. PubMed ID: 2852978
    [No Abstract]   [Full Text] [Related]  

  • 19. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga Nitzschia closterium.
    Hogan AC; Stauber JL; Pablo F; Adams MS; Lim RP
    Arch Environ Contam Toxicol; 2005 May; 48(4):433-43. PubMed ID: 15883677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for assessing the chronic toxicity of marine and estuarine sediment-associated contaminants using the amphipod Corophium volutator.
    Scarlett A; Rowland SJ; Canty M; Smith EL; Galloway TS
    Mar Environ Res; 2007 Jun; 63(5):457-70. PubMed ID: 17291579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.