These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 14759008)

  • 1. Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw.
    Sohn Y; Krishnaswamy S
    J Acoust Soc Am; 2004 Jan; 115(1):172-81. PubMed ID: 14759008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spring lattice modeling of the scanning laser source technique.
    Sohn Y; Krishnaswamy S
    Ultrasonics; 2002 Jun; 39(8):543-51. PubMed ID: 12109544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of point- and line-source laser-generated acoustic wave to surface flaws.
    Kenderian S; Djordjevic BB; Green RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):1057-64. PubMed ID: 12952096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of acoustic field induced by laser line source near surface defect.
    Shi Y; Shen Z; Ni X; Lu J; Guan J
    Opt Express; 2007 Apr; 15(9):5512-20. PubMed ID: 19532807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface breaking crack sizing method using pulse-echo Rayleigh waves.
    Verma B; Bélanger P
    Ultrasonics; 2024 Mar; 138():107232. PubMed ID: 38183757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects.
    Ghafoor I; Tse PW; Rostami J; Ng KM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface circular-arc defects interacted by laser-generated Rayleigh wave.
    Zhang Z; Zhao J; Pan Y
    Ultrasonics; 2020 Apr; 103():106085. PubMed ID: 32062179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal enhancement in Rayleigh wave interactions using a laser-ultrasound/EMAT imaging system.
    Boonsang S; Dewhurst RJ
    Ultrasonics; 2005 Jun; 43(7):512-23. PubMed ID: 15950025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical study of acoustic waves generated by a laser line pulse in an optically absorptive isotropic cylinder.
    Ségur D; Shuvalov AL; Audoin B; Pan YD
    J Acoust Soc Am; 2010 Jan; 127(1):181-5. PubMed ID: 20058962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical study of the excitability of zero group velocity Lamb waves by laser-ultrasound.
    Grünsteidl CM; Veres IA; Murray TW
    J Acoust Soc Am; 2015 Jul; 138(1):242-50. PubMed ID: 26233023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.
    Delrue S; Tabatabaeipour M; Hettler J; Van Den Abeele K
    Ultrasonics; 2016 May; 68():71-9. PubMed ID: 26921559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of laser generated ultrasonic wave frequency characteristics induced by a partially closed surface-breaking crack.
    Li J; Zhang H; Ni C; Shen Z
    Appl Opt; 2013 Jun; 52(18):4179-85. PubMed ID: 23842158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel 3D evaluation method for surface defects using broadband laser-generated Rayleigh waves with wavenumber analysis.
    Cheng Q; He J; Yang S; Xiong X; Luo Y
    Ultrasonics; 2024 Mar; 138():107258. PubMed ID: 38335921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source.
    Royer D; Chenu C
    Ultrasonics; 2000 Sep; 38(9):891-5. PubMed ID: 11012011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic field excited by a pulsed laser line source in a cylinder.
    Hu W; Qian M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1187-90. PubMed ID: 16793093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation and visualization of elastic waves using mass-spring lattice model.
    Yim H; Sohn Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):549-58. PubMed ID: 18238581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote characterization of surface slots by enhanced laser-generated ultrasonic Rayleigh waves.
    Xiao J; Chen J; Yu X; Lisevych D; Fan Z
    Ultrasonics; 2022 Feb; 119():106595. PubMed ID: 34638003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning high-power continuous wave laser-generated bulk acoustic waves.
    Li Z; Yan S; Xie Q; Ni C; Shen Z
    Appl Opt; 2017 May; 56(15):4290-4296. PubMed ID: 29047853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Line source representation for laser-generated ultrasound in aluminum.
    Bernstein JR; Spicer JB
    J Acoust Soc Am; 2000 Mar; 107(3):1352-7. PubMed ID: 10738789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flaw Detection in Highly Scattering Materials Using a Simple Ultrasonic Sensor Employing Adaptive Template Matching.
    Wu B; Huang Y
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.