BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14759166)

  • 1. Microporous metal organic materials: promising candidates as sorbents for hydrogen storage.
    Pan L; Sander MB; Huang X; Li J; Smith M; Bittner E; Bockrath B; Johnson JK
    J Am Chem Soc; 2004 Feb; 126(5):1308-9. PubMed ID: 14759166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jan; 128(3):726-7. PubMed ID: 16417355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jun; 128(25):8136-7. PubMed ID: 16787068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly controlled acetylene accommodation in a metal-organic microporous material.
    Matsuda R; Kitaura R; Kitagawa S; Kubota Y; Belosludov RV; Kobayashi TC; Sakamoto H; Chiba T; Takata M; Kawazoe Y; Mita Y
    Nature; 2005 Jul; 436(7048):238-41. PubMed ID: 16015325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks.
    Yang Q; Zhong C
    J Phys Chem B; 2005 Jun; 109(24):11862-4. PubMed ID: 16852458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.
    Yang J; Sudik A; Wolverton C; Siegel DJ
    Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen storage in metal-organic frameworks.
    Murray LJ; Dincă M; Long JR
    Chem Soc Rev; 2009 May; 38(5):1294-314. PubMed ID: 19384439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen adsorption measurements and modeling on metal-organic frameworks and single-walled carbon nanotubes.
    Poirier E; Chahine R; Bénard P; Lafi L; Dorval-Douville G; Chandonia PA
    Langmuir; 2006 Oct; 22(21):8784-9. PubMed ID: 17014118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman studies of hydrogen adsorbed on nanostructured porous materials.
    Panella B; Hirscher M
    Phys Chem Chem Phys; 2008 May; 10(20):2910-7. PubMed ID: 18473039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand.
    Roussel T; Bichara C; Gubbins KE; Pellenq RJ
    J Chem Phys; 2009 May; 130(17):174717. PubMed ID: 19425808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites.
    Dincă M; Long JR
    Angew Chem Int Ed Engl; 2008; 47(36):6766-79. PubMed ID: 18688902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen physisorption on the organic linker in metal organic frameworks: ab initio computational study.
    Wong M; Buda C; Dunietz BD
    J Phys Chem B; 2006 Jun; 110(21):10479-84. PubMed ID: 16722757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks.
    Walton KS; Snurr RQ
    J Am Chem Soc; 2007 Jul; 129(27):8552-6. PubMed ID: 17580944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of AlN nanostructures as hydrogen storage materials.
    Wang Q; Sun Q; Jena P; Kawazoe Y
    ACS Nano; 2009 Mar; 3(3):621-6. PubMed ID: 19256516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes.
    Cheng H; Cooper AC; Pez GP; Kostov MK; Piotrowski P; Stuart SJ
    J Phys Chem B; 2005 Mar; 109(9):3780-6. PubMed ID: 16851425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR spectroscopy of hydrogen adsorption on single-walled carbon nanotubes after exposure to high pressure.
    Pietrass T; Shen K
    Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):125-31. PubMed ID: 16263250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2.
    Dinca M; Long JR
    J Am Chem Soc; 2007 Sep; 129(36):11172-6. PubMed ID: 17705485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.