BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14759193)

  • 1. Mapping enzyme active sites in complex proteomes.
    Adam GC; Burbaum J; Kozarich JW; Patricelli MP; Cravatt BF
    J Am Chem Soc; 2004 Feb; 126(5):1363-8. PubMed ID: 14759193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition.
    Speers AE; Adam GC; Cravatt BF
    J Am Chem Soc; 2003 Apr; 125(16):4686-7. PubMed ID: 12696868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tandem orthogonal proteolysis strategy for high-content chemical proteomics.
    Speers AE; Cravatt BF
    J Am Chem Soc; 2005 Jul; 127(28):10018-9. PubMed ID: 16011363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype.
    Adam GC; Sorensen EJ; Cravatt BF
    Nat Biotechnol; 2002 Aug; 20(8):805-9. PubMed ID: 12091914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interchange of catalytic activity within the 2-enoyl-coenzyme A hydratase/isomerase superfamily based on a common active site template.
    Xiang H; Luo L; Taylor KL; Dunaway-Mariano D
    Biochemistry; 1999 Jun; 38(24):7638-52. PubMed ID: 10387003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1996 Jul; 35(29):9625-30. PubMed ID: 8755745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes.
    Adam GC; Sorensen EJ; Cravatt BF
    Mol Cell Proteomics; 2002 Oct; 1(10):828-35. PubMed ID: 12438565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenic and enzymological studies of the hydratase and isomerase activities of 2-enoyl-CoA hydratase-1.
    Kiema TR; Engel CK; Schmitz W; Filppula SA; Wierenga RK; Hiltunen JK
    Biochemistry; 1999 Mar; 38(10):2991-9. PubMed ID: 10074351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative inhibition studies of enoyl-CoA hydratase 1 and enoyl-CoA hydratase 2 in long-chain fatty acid oxidation.
    Wu L; Lin S; Li D
    Org Lett; 2008 Aug; 10(15):3355-8. PubMed ID: 18611036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases.
    Mann CJ; Weiner H
    Protein Sci; 1999 Oct; 8(10):1922-9. PubMed ID: 10548037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence analysis and structure prediction of enoyl-CoA hydratase from Avicennia marina: implication of various amino acid residues on substrate-enzyme interactions.
    Jabeen U; Salim A
    Phytochemistry; 2013 Oct; 94():36-44. PubMed ID: 23809632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule.
    Engel CK; Kiema TR; Hiltunen JK; Wierenga RK
    J Mol Biol; 1998 Feb; 275(5):847-59. PubMed ID: 9480773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106.
    Nishida M; Harada S; Noguchi S; Satow Y; Inoue H; Takahashi K
    J Mol Biol; 1998 Aug; 281(1):135-47. PubMed ID: 9680481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1997 Sep; 36(36):11044-9. PubMed ID: 9283097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase.
    Hofstein HA; Feng Y; Anderson VE; Tonge PJ
    Biochemistry; 1999 Jul; 38(29):9508-16. PubMed ID: 10413528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A competitive chemical-proteomic platform to identify zinc-binding cysteines.
    Pace NJ; Weerapana E
    ACS Chem Biol; 2014 Jan; 9(1):258-65. PubMed ID: 24111988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1.
    Widersten M; Björnestedt R; Mannervik B
    Biochemistry; 1996 Jun; 35(24):7731-42. PubMed ID: 8672473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 A resolution.
    Dirr H; Reinemer P; Huber R
    J Mol Biol; 1994 Oct; 243(1):72-92. PubMed ID: 7932743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity labeling of pig lung glutathione S-transferase pi by 4-(fluorosulfonyl)benzoic acid.
    Pettigrew NE; Moyer-Myers M; Colman RF
    Arch Biochem Biophys; 1999 Apr; 364(1):107-14. PubMed ID: 10087171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling the specific reactivity of the proteome with non-directed activity-based probes.
    Adam GC; Cravatt BF; Sorensen EJ
    Chem Biol; 2001 Jan; 8(1):81-95. PubMed ID: 11182321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.