BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14759193)

  • 21. Chemical proteomics with sulfonyl fluoride probes reveals selective labeling of functional tyrosines in glutathione transferases.
    Gu C; Shannon DA; Colby T; Wang Z; Shabab M; Kumari S; Villamor JG; McLaughlin CJ; Weerapana E; Kaiser M; Cravatt BF; van der Hoorn RA
    Chem Biol; 2013 Apr; 20(4):541-8. PubMed ID: 23601643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of the gamma-carboxyl group of glutamate-462 of the large alpha-subunit for the catalytic function and the stability of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Deng H; Yang SY
    Biochemistry; 1997 Jan; 36(1):261-8. PubMed ID: 8993342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communication between the two active sites of glutathione S-transferase A1-1, probed using wild-type-mutant heterodimers.
    Misquitta SA; Colman RF
    Biochemistry; 2005 Jun; 44(24):8608-19. PubMed ID: 15952767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microarray platform for profiling enzyme activities in complex proteomes.
    Sieber SA; Mondala TS; Head SR; Cravatt BF
    J Am Chem Soc; 2004 Dec; 126(48):15640-1. PubMed ID: 15571375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of 2-enoyl-CoA hydratase 2 from human peroxisomal multifunctional enzyme type 2.
    Koski KM; Haapalainen AM; Hiltunen JK; Glumoff T
    J Mol Biol; 2005 Feb; 345(5):1157-69. PubMed ID: 15644212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis.
    Gerlt JA; Babbitt PC
    Curr Opin Chem Biol; 1998 Oct; 2(5):607-12. PubMed ID: 9818186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity.
    Kiema TR; Taskinen JP; Pirilä PL; Koivuranta KT; Wierenga RK; Hiltunen JK
    Biochem J; 2002 Oct; 367(Pt 2):433-41. PubMed ID: 12106015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes.
    Weerapana E; Speers AE; Cravatt BF
    Nat Protoc; 2007; 2(6):1414-25. PubMed ID: 17545978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism.
    Thom R; Dixon DP; Edwards R; Cole DJ; Lapthorn AJ
    J Mol Biol; 2001 May; 308(5):949-62. PubMed ID: 11352584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.
    Stiti N; Chandrasekar B; Strubl L; Mohammed S; Bartels D; van der Hoorn RA
    ACS Chem Biol; 2016 Jun; 11(6):1578-86. PubMed ID: 26990764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymes harboring unnatural amino acids: mechanistic and structural analysis of the enhanced catalytic activity of a glutathione transferase containing 5-fluorotryptophan.
    Parsons JF; Xiao G; Gilliland GL; Armstrong RN
    Biochemistry; 1998 May; 37(18):6286-94. PubMed ID: 9572843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies.
    Gerlt JA; Babbitt PC
    Annu Rev Biochem; 2001; 70():209-46. PubMed ID: 11395407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of catalytic residues in enzyme active sites.
    Bartlett GJ; Porter CT; Borkakoti N; Thornton JM
    J Mol Biol; 2002 Nov; 324(1):105-21. PubMed ID: 12421562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic and structural contributions for glutathione-binding residues in a Delta class glutathione S-transferase.
    Winayanuwattikun P; Ketterman AJ
    Biochem J; 2004 Sep; 382(Pt 2):751-7. PubMed ID: 15182230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium Clostridium acetobutylicum.
    Kim EJ; Kim YJ; Kim KJ
    Biochem Biophys Res Commun; 2014 Aug; 451(3):431-5. PubMed ID: 25110148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of function in the crotonase superfamily: (3S)-methylglutaconyl-CoA hydratase from Pseudomonas putida.
    Wong BJ; Gerlt JA
    Biochemistry; 2004 Apr; 43(16):4646-54. PubMed ID: 15096032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quantitative index of substrate promiscuity.
    Nath A; Atkins WM
    Biochemistry; 2008 Jan; 47(1):157-66. PubMed ID: 18081310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of hexadienoyl-CoA bound to enoyl-CoA hydratase determined by transferred nuclear Overhauser effect measurements: mechanistic predictions based on the X-ray structure of 4-(chlorobenzoyl)-CoA dehalogenase.
    Wu WJ; Anderson VE; Raleigh DP; Tonge PJ
    Biochemistry; 1997 Feb; 36(8):2211-20. PubMed ID: 9047322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumour-related enzyme alterations in the clear cell type of human renal cell carcinoma identified by two-dimensional gel electrophoresis.
    Balabanov S; Zimmermann U; Protzel C; Scharf C; Klebingat KJ; Walther R
    Eur J Biochem; 2001 Nov; 268(22):5977-80. PubMed ID: 11722587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.