BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14759193)

  • 41. Tagging and detection strategies for activity-based proteomics.
    Sadaghiani AM; Verhelst SH; Bogyo M
    Curr Opin Chem Biol; 2007 Feb; 11(1):20-8. PubMed ID: 17174138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orthogonal protein purification--expanding the repertoire of GST fusion systems.
    Viljanen J; Larsson J; Broo KS
    Protein Expr Purif; 2008 Jan; 57(1):17-26. PubMed ID: 17964806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human Δ³,Δ²-enoyl-CoA isomerase, type 2: a structural enzymology study on the catalytic role of its ACBP domain and helix-10.
    Onwukwe GU; Kursula P; Koski MK; Schmitz W; Wierenga RK
    FEBS J; 2015 Feb; 282(4):746-68. PubMed ID: 25515061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.
    Ladner JE; Parsons JF; Rife CL; Gilliland GL; Armstrong RN
    Biochemistry; 2004 Jan; 43(2):352-61. PubMed ID: 14717589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of phage display and transition-state analogs to select enzyme variants with altered catalytic properties: glutathione transferase as an example.
    Widersten M; Hansson LO; Tronstad L; Mannervik B
    Methods Enzymol; 2000; 328():389-404. PubMed ID: 11075356
    [No Abstract]   [Full Text] [Related]  

  • 46. Mechanisms and structures of crotonase superfamily enzymes--how nature controls enolate and oxyanion reactivity.
    Hamed RB; Batchelar ET; Clifton IJ; Schofield CJ
    Cell Mol Life Sci; 2008 Aug; 65(16):2507-27. PubMed ID: 18470480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enzymes: nature's nanomachines. Royal Irish Academy Medal Lecture.
    Mantle TJ
    Biochem Soc Trans; 2001 May; 29(Pt 2):331-6. PubMed ID: 11356177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aldehyde dehydrogenase catalytic mechanism. A proposal.
    Hempel J; Perozich J; Chapman T; Rose J; Boesch JS; Liu ZJ; Lindahl R; Wang BC
    Adv Exp Med Biol; 1999; 463():53-9. PubMed ID: 10352669
    [No Abstract]   [Full Text] [Related]  

  • 49. Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
    Sieber SA; Niessen S; Hoover HS; Cravatt BF
    Nat Chem Biol; 2006 May; 2(5):274-81. PubMed ID: 16565715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effective fragment potentials and spectroscopy at enzyme active sites.
    Krauss M
    Comput Chem; 1995 Mar; 19(1):33-8. PubMed ID: 7735701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.
    Simon GM; Cravatt BF
    J Biol Chem; 2010 Apr; 285(15):11051-5. PubMed ID: 20147750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemical approaches for functionally probing the proteome.
    Greenbaum D; Baruch A; Hayrapetian L; Darula Z; Burlingame A; Medzihradszky KF; Bogyo M
    Mol Cell Proteomics; 2002 Jan; 1(1):60-8. PubMed ID: 12096141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activity-based protein profiling for the functional annotation of enzymes.
    Barglow KT; Cravatt BF
    Nat Methods; 2007 Oct; 4(10):822-7. PubMed ID: 17901872
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cinnamic aldehyde derived probes for the active site labelling of pathogenesis associated enzymes.
    Pitscheider M; Sieber SA
    Chem Commun (Camb); 2009 Jul; (25):3741-3. PubMed ID: 19557267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isotope-coded ATP probe for quantitative affinity profiling of ATP-binding proteins.
    Xiao Y; Guo L; Wang Y
    Anal Chem; 2013 Aug; 85(15):7478-86. PubMed ID: 23841533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The development and application of methods for activity-based protein profiling.
    Jessani N; Cravatt BF
    Curr Opin Chem Biol; 2004 Feb; 8(1):54-9. PubMed ID: 15036157
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Class assignment of sequence-unrelated members of enzyme superfamilies by activity-based protein profiling.
    Jessani N; Young JA; Diaz SL; Patricelli MP; Varki A; Cravatt BF
    Angew Chem Int Ed Engl; 2005 Apr; 44(16):2400-3. PubMed ID: 15765498
    [No Abstract]   [Full Text] [Related]  

  • 59. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes.
    Patricelli MP; Giang DK; Stamp LM; Burbaum JJ
    Proteomics; 2001 Sep; 1(9):1067-71. PubMed ID: 11990500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Proteome-Wide Potential for Reversible Covalency at Cysteine.
    Senkane K; Vinogradova EV; Suciu RM; Crowley VM; Zaro BW; Bradshaw JM; Brameld KA; Cravatt BF
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11385-11389. PubMed ID: 31222866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.