These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 14759194)
1. Dynamics of an enzymatic substitution reaction in haloalkane dehalogenase. Nam K; Prat-Resina X; Garcia-Viloca M; Devi-Kesavan LS; Gao J J Am Chem Soc; 2004 Feb; 126(5):1369-76. PubMed ID: 14759194 [TBL] [Abstract][Full Text] [Related]
2. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase. Devi-Kesavan LS; Gao J J Am Chem Soc; 2003 Feb; 125(6):1532-40. PubMed ID: 12568613 [TBL] [Abstract][Full Text] [Related]
3. Dynamic and electrostatic effects in enzymatic processes. An analysis of the nucleophilic substitution reaction in haloalkane dehalogenase. Soriano A; Silla E; Tuñón I; Ruiz-López MF J Am Chem Soc; 2005 Feb; 127(6):1946-57. PubMed ID: 15701029 [TBL] [Abstract][Full Text] [Related]
4. Solute solvent dynamics and energetics in enzyme catalysis: the S(N)2 reaction of dehalogenase as a general benchmark. Olsson MH; Warshel A J Am Chem Soc; 2004 Nov; 126(46):15167-79. PubMed ID: 15548014 [TBL] [Abstract][Full Text] [Related]
5. Contributions of long-range electrostatic interactions to 4-chlorobenzoyl-CoA dehalogenase catalysis: a combined theoretical and experimental study. Wu J; Xu D; Lu X; Wang C; Guo H; Dunaway-Mariano D Biochemistry; 2006 Jan; 45(1):102-12. PubMed ID: 16388585 [TBL] [Abstract][Full Text] [Related]
6. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase. Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514 [TBL] [Abstract][Full Text] [Related]
7. Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods. Otyepka M; Banás P; Magistrato A; Carloni P; Damborský J Proteins; 2008 Feb; 70(3):707-17. PubMed ID: 17729274 [TBL] [Abstract][Full Text] [Related]
8. VB/MM protein landscapes: a study of the S(N)2 reaction in haloalkane dehalogenase. Sharir-Ivry A; Shnerb T; Strajbl M; Shurki A J Phys Chem B; 2010 Feb; 114(6):2212-8. PubMed ID: 20095551 [TBL] [Abstract][Full Text] [Related]
9. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study. Koch DM; Peslherbe GH J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959 [TBL] [Abstract][Full Text] [Related]
10. QM/MM studies of the enzyme-catalyzed dechlorination of 4-chlorobenzoyl-CoA provide insight into reaction energetics. Xu D; Wei Y; Wu J; Dunaway-Mariano D; Guo H; Cui Q; Gao J J Am Chem Soc; 2004 Oct; 126(42):13649-58. PubMed ID: 15493922 [TBL] [Abstract][Full Text] [Related]
11. Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study. Núñez S; Antoniou D; Schramm VL; Schwartz SD J Am Chem Soc; 2004 Dec; 126(48):15720-9. PubMed ID: 15571394 [TBL] [Abstract][Full Text] [Related]
12. Nanosecond time-dependent Stokes shift at the tunnel mouth of haloalkane dehalogenases. Jesenská A; Sýkora J; Olzyńska A; Brezovský J; Zdráhal Z; Damborský J; Hof M J Am Chem Soc; 2009 Jan; 131(2):494-501. PubMed ID: 19113888 [TBL] [Abstract][Full Text] [Related]
13. 1,2-dichloroethane in haloalkane dehalogenase protein and in water solvent: a case study of the confinement effect on structural and dynamical properties. Murugan NA; Agren H J Phys Chem B; 2009 Mar; 113(11):3257-63. PubMed ID: 19235993 [TBL] [Abstract][Full Text] [Related]
14. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions. Rosta E; Klähn M; Warshel A J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904 [TBL] [Abstract][Full Text] [Related]
15. A QM/MM study of a nucleophilic aromatic substitution reaction catalyzed by 4-chlorobenzoyl-CoA dehalogenase. Xu D; Guo H; Gao J; Cui Q Chem Commun (Camb); 2004 Apr; (7):892-3. PubMed ID: 15045116 [TBL] [Abstract][Full Text] [Related]
16. Coupling between protein and reaction dynamics in enzymatic processes: application of Grote-Hynes Theory to catechol O-methyltransferase. Roca M; Moliner V; Tuñón I; Hynes JT J Am Chem Soc; 2006 May; 128(18):6186-93. PubMed ID: 16669689 [TBL] [Abstract][Full Text] [Related]
17. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
19. The energy gap as a universal reaction coordinate for the simulation of chemical reactions. Mones L; Kulhánek P; Simon I; Laio A; Fuxreiter M J Phys Chem B; 2009 Jun; 113(22):7867-73. PubMed ID: 19432459 [TBL] [Abstract][Full Text] [Related]
20. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]