BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1650 related articles for article (PubMed ID: 14759257)

  • 41. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements.
    Makarova KS; Wolf YI; van der Oost J; Koonin EV
    Biol Direct; 2009 Aug; 4():29. PubMed ID: 19706170
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea.
    Makarova KS; Sorokin AV; Novichkov PS; Wolf YI; Koonin EV
    Biol Direct; 2007 Nov; 2():33. PubMed ID: 18042280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes.
    Iyer LM; Anantharaman V; Wolf MY; Aravind L
    Int J Parasitol; 2008 Jan; 38(1):1-31. PubMed ID: 17949725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells.
    Vellai T; Vida G
    Proc Biol Sci; 1999 Aug; 266(1428):1571-7. PubMed ID: 10467746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comprehensive analysis of the origin of eukaryotic genomes.
    Saruhashi S; Hamada K; Miyata D; Horiike T; Shinozawa T
    Genes Genet Syst; 2008 Aug; 83(4):285-91. PubMed ID: 18931454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. OrthoMCL: identification of ortholog groups for eukaryotic genomes.
    Li L; Stoeckert CJ; Roos DS
    Genome Res; 2003 Sep; 13(9):2178-89. PubMed ID: 12952885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution.
    Yutin N; Wolf YI; Raoult D; Koonin EV
    Virol J; 2009 Dec; 6():223. PubMed ID: 20017929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential loss of ancestral gene families as a source of genomic divergence in animals.
    Hughes AL; Friedman R
    Proc Biol Sci; 2004 Feb; 271 Suppl 3(Suppl 3):S107-9. PubMed ID: 15101434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Origin and evolution of the eukaryotic SSU processome revealed by a comprehensive genomic analysis and implications for the origin of the nucleolus.
    Feng JM; Tian HF; Wen JF
    Genome Biol Evol; 2013; 5(12):2255-67. PubMed ID: 24214024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Endosymbiotic origin and differential loss of eukaryotic genes.
    Ku C; Nelson-Sathi S; Roettger M; Sousa FL; Lockhart PJ; Bryant D; Hazkani-Covo E; McInerney JO; Landan G; Martin WF
    Nature; 2015 Aug; 524(7566):427-32. PubMed ID: 26287458
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins.
    Makarova KS; Ponomarev VA; Koonin EV
    Genome Biol; 2001; 2(9):RESEARCH 0033. PubMed ID: 11574053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.
    Lappin FM; Shaw RL; Macqueen DJ
    Mar Genomics; 2016 Dec; 30():15-26. PubMed ID: 27346185
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution.
    Eliáš M; Klimeš V; Derelle R; Petrželková R; Tachezy J
    Biol Direct; 2016 Feb; 11(1):5. PubMed ID: 26832778
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conservation of gene co-regulation in prokaryotes and eukaryotes.
    Teichmann SA; Babu MM
    Trends Biotechnol; 2002 Oct; 20(10):407-10; discussion 410. PubMed ID: 12220896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis.
    Wolf YI; Rogozin IB; Koonin EV
    Genome Res; 2004 Jan; 14(1):29-36. PubMed ID: 14707168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elucidating evolutionary features and functional implications of orphan genes in Leishmania major.
    Mukherjee S; Panda A; Ghosh TC
    Infect Genet Evol; 2015 Jun; 32():330-7. PubMed ID: 25843649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contrasting modes of macro and microsynteny evolution in a eukaryotic subphylum.
    Li Y; Liu H; Steenwyk JL; LaBella AL; Harrison MC; Groenewald M; Zhou X; Shen XX; Zhao T; Hittinger CT; Rokas A
    Curr Biol; 2022 Dec; 32(24):5335-5343.e4. PubMed ID: 36334587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The phylogenetic diversity of eukaryotic transcription.
    Coulson RM; Ouzounis CA
    Nucleic Acids Res; 2003 Jan; 31(2):653-60. PubMed ID: 12527774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes.
    Wuichet K; Søgaard-Andersen L
    Genome Biol Evol; 2014 Dec; 7(1):57-70. PubMed ID: 25480683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes.
    Maglich JM; Sluder A; Guan X; Shi Y; McKee DD; Carrick K; Kamdar K; Willson TM; Moore JT
    Genome Biol; 2001; 2(8):RESEARCH0029. PubMed ID: 11532213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 83.